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Introduction

　Excessive alcohol intake is a known cause of hepatic disorders such as fatty liver, 

alcoholic hepatitis, hepatic �brosis, cirrhoses, and liver cancer1）.  An underlying mechanism 

for this damaging effect involves the production of reactive oxygen species （ROS） during 

alcohol metabolism.  Such oxidative stress in turn induces apoptosis in hepatocytes.  There 

are several pathways implicated in ethanol-induced apoptosis such as mitochondrial and 
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Fas death receptor signaling.  Glutathione （GSH） levels have also been associated with 

caspase-8 activation in ROS-related apoptotic cell death.  Immediate depletion of GSH 

inhibited caspase-8 activation, whereas prolonged GSH depletion induced apoptotic cell death 

due to suppressed anti-apoptotic actions 2）.

　The endoplasmic reticulum （ER） stress pathway is also affected by oxidative stress 3）.  

Although ER stress is a cell protection system 4）, the resulting apoptosis may contribute to 

neurodegenerative disease 5）, diabetic 6）, cancer 7）, and cardiovascular disease 8）.  However, the 

relationship between ER stress and ethanol-induced oxidative stress is not known.

　The ER is an essential organelle for the production and post-translational modi�cations of 

secretory and membrane proteins9）.  The ER is also a storage site for Ca2＋, which can be 

released in a controlled fashion to propagate cellular signal transduction.  Nascent proteins 

are folded with the assistance of molecular chaperones and folding enzymes in the ER.  It 

has been estimated that as many as 30％ of nascent proteins are unfolded or misfolded, 

retained in the ER, retrotranslocated to the cytoplasm via the ER-associated degradation 

（ERAD） mechanism, and then rapidly degraded by ubiquitination9）.  Accumulation of 

unfolded proteins occurs when there is an increase in the translation of secretory protein 

that exceeds the capacity of the folding apparatus and ERAD system or when there are 

perturbations in the ER environment, such as alterations in redox state or Ca2＋ levels.  To 

cope with ER stress, a series of signaling pathways referred to as the ER stress response 

or unfolded protein response （UPR） is activated.  Accumulation of unfolded or misfolded 

proteins in sensed by three main resident transmembrane sensors in the ER : （1） inositol-

requiring enzyme 1 （IRE-1α）, （2） activating transcription factor 6 （ATF-6）, and （3） RNA-

activated protein kinase （PKR）-like ER kinase （PERK）.  These sensors are normally held 

in an inactive state by the binding of intraluminal ER chaperones, in particular glucose-

regulated protein78 （BIP）.  PERK phosphorylates the α subunit of the eukaryotic initiation 

factor 2 （eIF2α）, which attenuates the initiation of translation and selectively increases 

translation of mRNA such as ATF-4, and this upregulates chaperones in response to 

ER stress.  Upregulated ATF-4 increases the expression of transcription factor C / EBP-

homologous protein （Chop）.  CHOP is of particular interest to this study as its increased 

expression, along with GRP78, is a hallmark of the ER stress response.  IRE-1α functions 

as a nuclease to splice X box-binding protein 1 （sXBP-1） mRNA.  The resultant sXBP-1 

activates transcription through UPR elements in gene promotors controling ERAD.  ATF-

6 translocates to the nucleus where it interacts with ER stress response element （ERSE） to 

upregulate chaperones such as BIP, GRP94, and IRE-1α.  Severe or prolonged ER stress 

increases expression of CHOP and induces apoptosis 10）.

　In addition, Ca2＋-dependent activation of calpain has been associated with ER-induced 

apoptosis11）.  Calpain is a calcium-dependent intracellular cysteine protease active at the cell 

membrane, which activates caspase-3 through caspase-4 and induces apoptosis.

　This study sought to investigate this complex association between ethanol-induced oxi-
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dative stress and ER stress in alcohol dehydrogenase （ADH）-containing human hepatoma 

cells （SK-Hep1 cells）, with a focus on the UPR mechanism and Ca2＋-dependent activation 

of calpain pathway.

Materials and Methods

Materials

　Ethanol, N-acetyl-L-cysteine （NAC）, and Eagle’s Minimum Essential Medium （E-MEM） 
were purchased from Wako （Osaka, Japan）.  Fetal bovine serum （FBS） was purchased 

from Sigma-Aldrich （St.Louis, MO, USA）.  Penicillin G sodium, streptomycin sulfate, and 

amphotericin B were obtained from Invitrogen （Carlsbad, CA, USA）, while 5-（and-6）- 
chloromethyl-2’, 7’-dichlorodihydrofluorescein diacetate, acetyl ester （CM-H2DCFDA） mixed 

isomers were purchased from Molecular Probes （Eugene, OR, USA）.  All other chemicals 

used in this experiment were of the purest grade commercially available.

Cell culture and drug treatment

　SK-Hep1 cells （human liver adenocarcinoma, EC-91091816） were purchased from the 

European Collection of Cell Cultures （Salisbury, UK）.  SK-Hep1 cells were cultured in 

E-MEM containing 10％ FBS and maintained in a humidi�ed atmosphere of 5％ CO2 and 

95％ air at 37℃.  For studies on the effects of ethanol, SK-Hep1 cells were incubated in 

E-MEM with or without （control） ethanol （200 mM） for 5 hours.  When we treated with 

50-300 mM ethanol in preliminary experiments, 200 mM ethanol was a suitable concentra-

tion for inducing apoptosis （data not shown）.  Furthermore, acute alcohol intoxication in 

children appears at 10-100 mM of blood ethanol 11）.  For studies under antioxidant, SK-

Hep1 cells were pretreated with a NAC for 1 hour, followed by cotreatment with 200 mM 

ethanol and 10 mM NAC.  All treatments were carried out under sterile conditions.

Detection of reactive oxygen species （ROS）
　Diol groups can be oxidized by ROS to a fluorescent form, and diol-containing dyes 

have proved to be excellent probes for assaying ROS production12）.  SK-Hep1 cells were 

seeded in 96-well plates at 1 × 105 cells / ml and treated with 200 mM ethanol and 10 mM 

NAC for 5 hours.  Free radical production was measured by incubating SK-Hep1 cells with 

CM-H2DCFDA, which is a stable non-�uorescent molecule that passively diffuses into cells, 

where the acetate is acted on by intracellular esterases to produce a polar diol that is well 

retained within the cells.  Redox state of cells was determined by exciting CM-H2DCFDA-

loaded cells at 488 nm and detecting emitted fluorescence at 530 nm using an LB 970T 

Fluorometer （Berthold Technologies GmbH & Co, KG, Bad Wildbad, Germany）.

Detection of apoptosis

　Single-stranded DNA （ssDNA）
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　The presence of ssDNA provides specific evidence of the apoptotic process, and was 

determined in this study using a formamide-monoclonal antibody （mAb） against ssDNA 

as described in our previous report 13）.  Formamide selectively denatures DNA in apoptotic 

cells, but not in necrotic cells nor in cells with DNA breaks in the absence of apoptosis14）.

Annexin V and Hoechst staining

　SK-Hep1 cells cultured in 96-well plates and treated with 200 mM ethanol and 10 mM 

NAC for 5 hours were stained with a DNA dye, Hoechst33342 （Wako, Osaka, Japan） to 

visualize nuclear morphology.  Stained cells were then washed in PBS, and speci�c binding 

of annexin V-cy3 （Annexin V-cy3 Apoptosis Detection Kit ; Medical & Biological Laborato-

ries, Nagoya, Japan） was carried out by incubation of the cells for 5 min at room tempera-

ture in binding buffer containing annexin V.  The staining was analyzed using Meta Xpress 

Image Acquisition （Molecular Devices, Tokyo, Japan）.

Semiquantitative RT-PCR analysis

　To measure mRNA expressions of Bip, sXbp1, Chop, and β-actin, SK-Hep1 cells were 

treated with 200 mM ethanol and 10 mM NAC for 5 hours, and then subjected to total 

RNA extraction using the QIAamp RNAmini kit （QIAGEN K.K., Tokyo, Japan）.  Reverse-

transcription polymerase chain reaction （RT-PCR） analysis was carried out using the Omnis-

cript RT Kit （QIAGEN） according to the manufacturer’s procedure.  The sequences of the 

primers used for ampli�cation are shown in Table 1.

　Amplification by PCR for Bip （42 cycles）, Chop （38 cycles）, and sXbp1 （38 cycles） 
was performed （1 cycle comprised of 95℃ for 30 sec, 63℃ for 30 sec, and 72℃ for 30 

sec）, followed by a �nal extension at 72℃ for 7 min.  The reaction （30 cycles） for β-actin 

comprised 94℃ for 30 sec to 60℃ for 30 sec followed by 72℃ for 1 min for each cycle.  

The PCR products were electrophoresed on 2％ agarose gels and visualized by ultraviolet 

transillumination （Atto Corp, Tokyo, Japan）.  Bands were quanti�ed by densitometry using a 

scanner employing Scion Image Version 4.02 software.  The ratio of target cDNA to β-actin 

was used as a relative estimate of mRNA abundance.

Table 1.   Sequences of forward and reverse oligonucleotides used for cDNA amplification, size of the PCR 
product, and the Genebank accession number for each cDNA.

Sense Antisense PCR Genebank

β-actin 5’-TCGTCACCAACTGGGACGACATGG-3’ 5’-GATCTTGATCTTCATTGTGCTGGG-3’ 764bp X70351

Bip 5’-CGTGTTCAAGAACGGCCG-3 5’-CGTAGACAGTACGACAGCAACTGT-3 404bp M19645

Chop 5’-GGCAGCTGAGTCATTGCC-3’ 5’-GCAGATTCACCATTCGGTCA-3’ 496bp X71427

sXbp-1 5’-CCGCTCATGGTGCCAGCC-3’ 5’-CACCTGCTGCGGACTCAG-3’ 394bp NM1079539
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Intracellular free Ca2＋ （［Ca2＋］i） measurements by Meta Xpress Image Acquisition

　Levels of ［Ca2＋］i were analyzed using a calcium-sensitive �uorescence Fura-2 AM dye 15）.  

SK-Hep-1 cells were loaded with 3 μM Fura-2-AM diluted in Hepes-Tyrode buffer / 0.1％ 

BSA ［140 mM NaCl, 2.7 mM KCl, 1.8 mM CaCl2, 12 mM NaHCO3, 5.6 mM D-glucose, 

0.49 mM MgCl2, 0.37 mM NaH2PO4, 25 mM Hepes / NaOH （pH 7.4）, 0.1％ BSA］ for 40 

min at 37℃.  After incubation, the cells were washed with Hepes-Tyrode buffer / 0.1％ BSA.  

Changes in the ［Ca2＋］i were measured by monitoring the ratio of the �uorescence signals 

of Fura-2 AM with the Meta Xpress Image Acquisition.

Measurement of caspase-3, -4, and calpain activities

　SK-Hep1 cells were treated with 200 mM ethanol and 10 mM NAC for 5 hours.  The 

medium was then discarded and adherent cells were harvested in PBS and sedimented by 

centrifugation at 500 × g.  The pellets were resuspended in chilled cell lysis buffer （Medical 

& Biological Laboratories, Aichi, Japan）, incubated for 10 min on ice, and then centrifuged 

for 3 min at 10,000 × g.  The supernatants were added to reaction buffer containing 10 μM 

DTT （Medical & Biological Laboratories） and each peptide substrate and incubated at 37℃ 

for 2 hours.  Substrates for caspase-3 and caspase-4 （Kamiya Biochemical Company, Seattle, 

WA, USA） were Asp-Glu-Val-Asp-7-amino-4-trifluoromethy coumain （AFC） and Leu-Glu-

Ala-Asp-AFC, respectively.  Calpain activity was determined in accordance with standard 

techniques using a commercially available Calpain Activity Assay Kit （Biovision, Mountain 

View, CA, USA）.  The substrate for calpain was Leu-Leu-Try-AFC.  AFC released by the 

respective enzyme reactions was measured spectrofluorometrically with an excitation wave-

length of 405 nm and an emission wavelength of 505 nm using the LB 970T Fluorometer.

Statistical analysis

　Results are expressed as mean±standard error of the mean （S.E.M）.  Comparison of the 

effects of various treatments with those of the untreated normal cells was performed with 

one-way Dunnetts’ as the post hoc test.  Differences with P-values of less than 0.05 were 

considered statistically signi�cant.

Results

The in�uence of ethanol on ROS production

　To investigate the effect of ethanol treatment on hydrogen peroxide production, we used 

CM-H2DCFDA, a ROS-sensitive dye.  DCF �uorescence as an indicator of ROS formation 

is shown in Fig. 1.  Treatment with 200 mM ethanol for 5 hours signi�cantly increased the 

DCF fluorescence compared with that of normal cells.  ROS production in hepatocytes 

treated with ethanol （50-300 mM） increased dose dependently compared with normal cells 

（data not shown）.  However, the increase in DCF �uorescence upon exposure to 200 mM 

ethanol was signi�cantly eliminated by pretreatment with 10 mM NAC.
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Detection of ethanol-induced apoptosis

　Presence of ssDNA was used to distinguish between apoptosis and necrosis in our treated 

cells.  Primary monoclonal antibodies against ssDNA and HRP-labeled anti-mouse IgM were 

used to detect the formamide-denatured DNA.  ssDNA levels in hepatocytes treated with 

ethanol （50-300 mM） was increased dose dependently compared with normal cells （data 

not shown）.  Fig. 2（A） shows that ethanol-induced apoptotic cells generated significantly 

higher levels of ssDNA after 5 hours of incubation compared with normal cells, indicating 

that treatment with 200 mM ethanol induced apoptosis.  Pretreatment of ethanol-induced 

apoptotic cells with NAC inhibited the increased ssDNA levels after 5 hours of incubation 

compared to cells not pretreated with NAC.

　We further determined whether ethanol induces apoptosis in SK-Hep1 cells by annexinV-

cy3 staining, and nuclear staining with Hoechst33342.  In cells undergoing apoptosis, phos-

phatidylserine （PS） is exposed at the outer leaflet of the plasma membrane, and specific 

binding to PS by annexin V allows discrimination between viable and apoptotic cells16）.  

The MetaXpress Image Acquisition analysis revealed a signi�cantly increased proportion of 

apoptotic cells in 200 mM ethanol treated-SK-Hep1 cultures at 5 hours ［Fig. 2（B）, （C）］.  
Pretreatment of the ethanol-induced apoptotic cells with NAC suppressed the ethanol-

induced increase in apoptosis.  This �nding implicated increased cellular oxidative stress as 

the likely cause of ethanol-induced apoptosis in our cells.

Fig. 1.   Effect of ethanol on ROS generation in SK-
Hep1 cells. Generation of ROS in SK-Hep1 
cells treated with 200 mM ethanol or 10 mM 
NAC＋200 mM ethanol was analyzed spectro-
�uorometrically. Each value represents the mean
± s.e.m. of 6-12 samples. Significant statistical 
differences are shown for comparison with nor-
mal （＊P＜0.05） and comparison with treatment 
of ethanol （#P＜0.05）.
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Semiquantitative RT-PCR analysis

　Fig. 3（A）-（C） represent the mRNA expression analysis for Bip, Chop, and sXbp-1 as 

a ratio of target mRNA /β-actin mRNA in treated SK-Hep1 cells.  The amount of target 

mRNA and β-actin expression increased with cycle numbers of PCR, and PCR products 

were semiquantified during the reaction by measuring the fluorescence intensity.  The Bip 

and Chop mRNA expressions in SK-Hep1 cells treated with 200 mM ethanol for 5 hours 

Fig. 2.   Effects of ethanol on ssDNA and Annexin V staining in SK-Hep1 cells. SK-
Hep1 cells （1 × 105 cells / ml） were incubated in E-MEM with 200 mM ethanol 
or 200 mM ethanol＋10 mM NAC for 5 hours at 37℃. （A） ssDNA assay. 
Formamide-denaturable DNA was detected in apoptotic cells. （B, C） Annexin V 
staining. After treatment with 200 mM ethanol for 5 hours, SK-Hep1 cells were 
stained with anti-annexin V-Cy3 and Hoechst33342 followed by MetaXpress 
Image Acquisition analysis. （C） The results of analysis revealed the proportion 
of apoptotic cells. Each value represents the mean±s.e.m. of 6-12 samples. For 
（A） and （C）, significant statistical differences are shown for comparison with 

normal （＊P＜0.05） and comparison with treatment of ethanol （#P＜0.05）.
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increased signi�cantly to 138.8％ and 187.9％, respectively, relative to untreated control cells.  

Pretreatment with NAC prevented these ethanol-induced increases in Bip and Chop mRNA 

expressions.  The ethanol treatment also significantly increased the mRNA expression of 

sXbp1, compared with normal cells ［Fig. 3（C）］, and similarly, this effect was prevented by 

pretreatment with NAC, relative to apoptotic cells incubated with ethanol alone.

Intracellular free Ca2＋ （［Ca2＋］i） alteration following ethanol exposure

　We next investigated the effect of treatment with 200 mM ethanol and 200 mM ethanol

＋10 mM NAC on ［Ca2＋］i homeostasis by MetaXpress Images Acquisition ［Fig. 4（A）, 
（B）］.  ［Ca2＋］i levels in SK-Hep1 cells treated with 200 mM ethanol rose quickly and tran-

siently within 3 sec, then returned to basal levels within 7 sec, and pretreatment with NAC 

had no in�uence on the elevated ［Ca2＋］i levels.

Measurement of caspase-3, -4, and calpain activities

　Caspases are critical mediators of apoptosis in SK-Hep1 cells ; thus, we next measured 

several caspase activities using synthetic fluorometric substrates ［Fig. 5（A）, （B）］.  After 

Fig. 3.   Effect of ethanol on Bip, Chop, and sXbp-1 
mRNA expressions in SK-Hep1 cells. Deter-
mination of （A）Bip, （B）Chop, （C）sXbp-1  
mRNA expressions by semiquantitative PCR. 
Total RNA was extracted from ethanol-treated 
SK-Hep1 cells for 5 hours, and RT-PCR analyses 
were performed using specific primers for Bip, 
Chop, sXbp-1, and β-actin. Transcript levels were 
normalized using β-actin as the housekeeping 
gene. The resulting target mRNA /β-actin mRNA 
ratios are represented as the mean ± s.e.m. of 
6-12 samples. Signi�cant statistical differences are 
shown for comparison with normal （＊P＜0.05） 
and comparison with treatment of ethanol （#P＜
0.05）.
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incubation with 200 mM ethanol for 5 hours, caspase-3 and caspase-4 activities signi�cantly 

increased compared with those in normal cells.  Pretreatment with NAC prevented the 

increase in caspase-3 activity, but not in caspase-4 activity.

   Calpain is also activated by elevated ［Ca2＋］i levels and ER stress.  Treatment with 

ethanol for 5 hours significantly increased calpain activity in the SK-Hep1 cells compared 

with untreated cells ［Fig. 5（C）］.  However, pretreatment with the NAC antioxidant had no 

influence on the increase in calpain activity.  These results suggested that the increases in 

［Ca2＋］i levels as well as calpain and caspase-4 activities in ethanol-treated hepatocytes were 

not caused by the production of oxidative stress.

Discussion

　Alcoholic liver disease （ALD） is the most common hepatic disease in Western countries.  

Fig. 4.   Effect of ethanol on ［Ca2＋］i levels in SK-Hep1 cells. （A） ［Ca2＋］i levels of SK-Hep1 cells treated 
with 200 mM ethanol in the presence or absence of 10 mM NAC were analyzed by MetaXpress 
Image Acquisition. Cells were loaded with Fura-2 AM as described in the methods. （B） Altera-
tions to ［Ca2＋］i levels in SK-Hep1 cells treated with 200 mM ethanol or 200 mM ethanol＋10 
mM NAC and in normal cells were measured. Ethanol was added to the SK-Hep1 cells at the 
times indicated by the arrows.
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Chronic alcohol consumption causes liver damage leading to steatosis, alcoholic hepatitis, 

�brosis, and cirrhosis, as well as the development of hepatocellular carcinoma in susceptible 

individuals 17, 18）.  Acute liver injury induced by ethanol is also drawing increased attention 

because the incidence of acute alcoholism or binge drinking is on the rise worldwide19）.  

ALD has wide-ranging biological effects including on the cellular redox state, oxidative 

stress, cytokine milieu and signaling, immune responses, and polymorphisms in the genes 

encoding SOD2, CD14 endotoxin receptor, TNF-α, TGF-α, and angiotensinogen inhibition20）.

　Recent studies suggested an association between ER stress and ALD.  Intragastric alcohol-

fed mice revealed initially altered expression in a set of genes related to the UPR or ER 

stress response.  The alcohol-fed mice also showed severe steatosis, scattered apoptosis, and 

necroin�ammatory foci21）.  Moreover, alcohol-fed guinea pigs showed increased amounts of 

CYP2E1 and BIP mRNA, CYP2E and BIP protein, and activated caspase-1222）, in addition 

to liver steatosis and apoptosis.  Finally, in a lipopolysaccharide （LPS）-induced injury rat 

model, cirrhotic livers exhibited partial UPR activation such as eIF2α activation in the basal 

state and full UPR such as activation of IRE1, ATF-6, and eIF2α after LPS challenge23）.  

As stated above, it is conceivable that ALD involves ER stress.

　In this study, ROS production in hepatocytes treated with ethanol was increased dose 

dependently compared with normal cells （data not shown）.  Oxidative stress is caused by 

disrupted intracellular redox homeostasis, and ROS production induced under oxidative 

Fig. 5.   Effect of ethanol on caspase-3, caspse-4, and 
calpain activities determined fluorometrically in 
SK-Hep1 cells. （A） Caspase-3 activity in the cell 
lysates was assayed using the substrate Asp-Glu-
Val-Asp-AFC. （B） Caspase-4 activity in the cell 
lysates was assayed using the substrate Leu-Glu-
Ala-Asp-AFC. （C） Calpain activity in the cell 
lysates was assayed using the substrate Ac-Leu-
Leu-Try-AFC. Each value represents the mean
± s.e.m. of 6-12 samples. Significant statistical 
differences are shown for comparison with normal 
（＊P＜0.05） and comparison with treatment of 

ethanol （#P＜0.05）.
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stress can cause profound cell damage including apoptosis of hepatocytes.  A previous 

study showed that ethanol metabolism via alcohol dehydrogenase leads to increased ROS 

production, hepatocyte damage, and apoptosis in long-term ethanol-fed rats 24）.  Such ethanol-

induced oxidative stress in the hepatocytes is therefore believed to cause damage mediated 

by ROS production.  When SK-Hep1 cells in this study were pretreated with an antioxidant 

for 1 hour before the ethanol treatment, ER stress was suppressed signi�cantly.  Ethanol has 

been directly associated with ER stress previously in hepatocytes25）, and considerable interac-

tions have been documented between oxidative stress and ER stress.  Although the results 

are not entirely consistent, ROS does seem to trigger the ER stress response 26）.

　ROS production in our cells was increased by treatment with ethanol and subsequently 

decreased to the level of normal cells by pretreatment with NAC.  Furthermore, the 

ethanol-induced increase in ssDNA was also signi�cantly inhibited by NAC, although not to 

the level in normal cells.  This suggested that there are oxidative stress and non-oxidative 

stress pathways underlying ethanol-induced apoptosis.

　ER stress is caused by the accumulation of misfolded proteins and alterations in ［Ca2＋］i 

homeostasis, and several pathways have been proposed to link ER stress to apoptosis.  The 

present study focused on UPR signaling and ethanol, by assessing changes in the mRNA 

expressions of Bip, Chop, and sXbp1 in ethanol-induced apoptotic cells.  These expressions 

were increased in a time- and dose-dependent manner, and in turn suppressed by pretreat-

ment with NAC.  Our study therefore supported that ethanol-induced oxidative stress 

induces apoptosis through the UPR.

　The expression of CHOP, an important mediator of ER stress-induced cell death 27）, is 

regulated mainly at the transcriptional level, although the mechanisms by which CHOP 

contributes to regulating cell death are not completely understood.  However a previous 

study showed that, increased CHOP expression may perturb the cellular redox state by the 

depletion of cellular glutathione 2）.  And also overexpression of CHOP leads to a decrease 

in anti-apoptotic Bcl-2 protein and to the translocation of pro-apoptotic Bax protein from 

the cytosol to the mitochondria 27）.  Thus, a CHOP-mediated death signal seems to be trans-

mitted to the mitochondria.

　Finally, we investigated the effect of ethanol on Ca2＋-dependent calpain activation, includ-

ing ［Ca2＋］i, calpain activation, and caspase-3 and -4 activities.  All these parameters were 

increased dose dependently by ethanol incubation ; however, pretreatment with NAC did not 

attenuate the transient rise in ［Ca2＋］i nor the increase in caspase-4 and calpain activation 

induced by ethanol.  These �ndings suggested that Ca2＋-dependent calpain activation is not 

associated with ethanol-induced oxidative stress, and these �ndings are consistent with a pre-

vious study in which oxidative stress does not lead to apoptosis through caspase-4 activity 28）.  

A recent study in PrPc cells showed that H2O2 induces ROS generation, but not caspase-12 

activation28）.  As mentioned above, the results consensus points to a role for ER stress in 

chronic alcohol-induced mitochondrial stress.
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　In conclusion, our study demonstrated that ethanol-induced oxidative and non-oxidative 

stress-induced apoptosis through ER stress in SK-Hep1 cells.  Ethanol-induced oxidative 

stress activated the URP, but not Ca2＋-dependent calpain activation.  Therefore, ethanol-

induced oxidative stress promotes apoptosis through ER stress, but only via mitochondria-

mediated and / or Fas receptor pathways.  Our results on ER stress and ethanol-induced 

apoptosis could highlight a potential therapeutic target for the treatment of ALD.
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