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Introduction

　Human skin routinely undergoes damage from sunlight and other sources of environ-

mental irradiation.  Ultraviolet （UV） irradiation has been identi�ed as a cause of several 

adverse cutaneous effects such as sunburn 1）, photoaging 2）, and skin cancer 3）.  All of these 

conditions are closely correlated with an increase in photo-oxidative stress 4-7）.  In sunburn 
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diester of vitamin C and vitamin E on UV radiation-induced NHEK injury.  
NHEK were cultured in EpiLifeⓇ medium supplemented with Human Kera-
tinocyte Growth Supplement Kit.  NHEK viability was determined by crystal 
violet （CV） staining 48 h after the UV irradiation.  The mRNA expressions 
of the C/EBP homologous protein （Chop） transcription factor and endoplas-
mic reticulum-resident molecular chaperone, Bip, were determined by RT-PCR 
analyses.  UV was especially effective in killing NHEK when applied in the 
wavelength region of 250-280 nm.  The minimum exposure dose required to 
kill 50% of cells （LD50） was 1.64 mJ/cm2 at 269 nm.  At 235 and 310 nm, the 
LD50 for NHEK was 6.62 and 293 mJ/cm2, respectively.  Irradiation of 660-
mJ/cm2 at 310 nm signi�cantly decreased the cell viability to 30% of control 
（without irradiation）.  The addition of 0.1 mM EPC-K1 after irradiation 
returned the cell viability to 118%.  Six hours after the 660-mJ/cm2 irradiation 
at 310 nm, Chop and Bip mRNA levels in NHEK were increased to 487% 
and 283%, respectively, and were not signi�cantly affected by EPC-K1.  Chop 
and Bip are responsive to ER stress.  These results suggested that EPC-K1 
exerts a protective effect against UV-induced NHEK injury, and further studies 
should investigate the molecular mechanism underlying this effect.
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following excessive exposure to solar UV radiation, epidermal keratinocyte death occurs pri-

marily by apoptosis 2, 8）.  UV irradiation induces reactive oxygen species （ROS） production 

and subsequent apoptotic cell death in keratinocytes 10）.  Apoptosis is also associated with 

endoplasmic reticulum （ER） stress through ROS generation 11）.  In contrast, narrow-band 

UVB （311 ± 2 nm） irradiation is used to treat psoriasis vulgris 12）, vitiligo 13）, mycosis fun-

goides 14）, and atopic dermatitis 15）, although excessive narrow-band UVB is a common cause 

of skin in�ammation and it might increase the risk of carcinogenesis.  Therefore, antioxidant 

protection might be useful to protect against cutaneous injury from UV irradiation.

　A phosphate diester of vitamin C and vitamin E, EPC-K1, is a scavenger of both 

hydrophilic and hydrophobic radicals 16）, it inhibits lipid peroxide production in retinal 

homogenates 17）, and inhibits phospholipase A2 activity 18）.  Epigallocatechin gallate （EGCG） 
is a potent antioxidant and shows photochemopreventive effects in several in vitro and in 

vivo systems 19-21）.  From our comparative study of antioxidants on iron-induced peroxida-

tion in bovine retina, EPC-K1 and EGCG were quite active with IC50 values of 20μM 

and 6.8μM, respectively 17）.  This study investigated the preventive effect of EPC-K1 and 

EGCG on UV radiation-induced injury to normal human epidermal keratinocytes （NHEK） 
by measuring effects on C/EBP-homologous protein （CHOP）, a transcription factor, and the 

chaperone HSP70 family member, BIP, as indicators of ER stress 22）.  CHOP participates in 

adaptive responses of the epidermis following UV exposure in vivo 23）.

　Additionally, we determined the UV （235-310 nm） action spectra for killing NHEK 

because UV radiation of different wavelengths has different effectiveness in eliciting NHEK 

injury.

Methods

Cell culture

　NHEK were obtained from Lonza （Walkersville, MD, USA）.  NHEK were cultured 

in EpiLifeⓇ medium （Cascade Biologics, Portland, OR, USA） supplemented with human 

keratinocyte growth supplement （HKGS Kit ; Cascade Biologics） containing bovine pituitary 

extract, bovine insulin, hydrocortisone, bovine transferrin, human epidermal growth factor, 

gentamicin, and amphotericin.  The cells were grown in 75-cm2 plastic �asks at 37℃ in a 

humidi�ed atmosphere containing 5% CO2.  The medium was changed every 2-3 days.  The 

cells were harvested at 80% con�uence and transferred using a trypsin neutralizing solution 

（Lonza, Walkersville, MD, USA）.  Cell passages 4 or 5 were used for this study.

UV exposure

　A xenon-lamp light source （MAX-301, Asahi Spectra Co Ltd, Tokyo, Japan） was used for 

UV exposure.  This apparatus is equipped with band pass �lters that isolate speci�c wave-

length regions of UV radiation.  The UV output was delivered to the cells with a uniform 

irradiance by a quartz light guide （Asahi Spectra） and a quartz collimating lens （Asahi 
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Spectra）.
　Before exposure at each wavelength, irradiance was measured at the position of the target 

cells with a radiometer （IL 1400A, International Light Technology, Peabody, MA, USA） 
connected to a silicon-photodiode detector （SEL033, International Light）.  Exposure dura-

tions were determined by dividing doses to be achieved by the measured irradiance.  After 

exposure, irradiance was remeasured, averaged with the �rst measurement, and then used to 

calculate the accurate exposure dose.  The radiometer was calibrated prior to each experi-

ment.

　Before exposure for subconfluent NHEK, the medium was replaced with phosphate-

buffered saline （PBS）, which is free of any photoactive compounds.  After irradiation, the 

PBS was immediately replaced with EpiLifeⓇ medium.

Determination of cell viability : crystal violet （CV） staining

　NHEK were cultured in 96-well plates to 80% con�uence before the exposure to UV 

irradiation.  After 48 h of UV irradiation, the medium was removed from each well, and 

then the plates were washed with saline and lightly dried.  Cells were then stained by 

incubation at room temperature for 15 min with 50μl/well of 0.1% crystal violet （CV ; 

Wako Pure Chemical Industries Ltd, Osaka, Japan） and 1% methanol in PBS.  Plates were 

then washed in PBS and dried.  After adding sodium dodecyl sulfate （Wako Pure Chemi-

cals Industries Inc, Hercules, CA, USA） to the wells, their absorbance at 570 nm, which is 

expected to be proportional to the number of living cells, was measured using a microplate 

reader （Model 680 XR, Bio-Rad Laboratories）.  Cell viability was calculated from the 

absorbance by linear interpolation between the mean absorbance readings for the negative 

and positive controls, which correspond to cell viabilities of 0% and 100%, respectively.

Determination of the UV action spectrum for killing NHEK

　NHEK in 96-well plates with PBS were exposed to narrow-band UV radiation with a 

bandwidth of approximately 10 nm at 10 different wavelengths from 235 nm to 310 nm 

（Table 2）.  After the irradiation, NHEK were cultured for 24 h, and then the LDH activity 

was measured.  After 48 h of culturing, the cell viability was determined by CV staining.  

The exposure dose required to kill 50% of cells （LD50） was derived from the cell viability 

for each wavelength and plotted against wavelength to obtain action spectra.

Measurement of the effectiveness in antioxidants on 310 nm-induced injury in NHEK

　NHEK in 96- or 6-well plates with PBS was irradiated by 660 mJ/cm2 at 310 nm.  After 

irradiation, the PBS was immediately replaced with EpiLifeⓇ medium and 0.1 mM L-ascorbic 

acid 2-［3,4-dihydro-2,5,7,8-tetramethyl-2-（4,8,12 -trimethyltridecyl）-2H-l-benzopyran-6yl-hydrogen 

phosphate］ potassium salt （EPC-K1, Senju Pharmaceutical, Osaka, Japan） or 0.1 mM 

epigallocatechin gallate （EGCG, Sigma Aldrich, St. Louis, MO, USA）.  After a further 6 h, 
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NHEK in the 6-well plates were collected for RT-PCR analysis.  The cell viability of NHEK 

was determined by CV staining at 48 h after the treatment.

RT-PCR analysis

　After 6 h of 660 mJ/cm2 irradiation at 310 nm, NHEK in 6-well plates were collected 

and stored at -40℃ until used for assay.  Chop （C/EBP homologous protein） and Bip 

（the chaperone HSP70 family mRNA in NHEK） were analyzed by RT-PCR at 6 h after 

the 310-nm exposure as markers of endoplasmic reticulum （ER） stress.  Total RNA was 

extracted from NHEK using the QIAamp RNA Mini kit （QIAGEN K.K, Tokyo, Japan）.  
RT-PCR analysis was carried out using the Omniscript RT Kit （QIAGEN） according to the 

manufacturer’s instructions.  Table 1 details the primers used for ampli�cation.  The PCR 

products were electrophoresed through a 2.0% agarose gel visualized by ultraviolet transillu-

mination （Atto Corp, Tokyo, Japan）.  Quanti�cation was performed by densitometry using a 

scanner and Scion Image Version 4.02 software.  The ratio of target cDNA to β-actin was 

used as a relative estimate of mRNA abundance.  Each mRNA expression is shown as the 

percentage of expression in the control NHEK.

Statistical analysis

　Data were expressed as mean ± SE.  Statistical signi�cance was assessed by Student’s 
t-test.  P values less than 0.05 were considered signi�cant.

Results

The UV action spectrum for killing NHEK

　At each exposure wavelength, cell viability assessed by CV staining decreased with 

Table 1.  The sequences of the primers

Sequences of oligonuclectide primers PCR product（bp）Genebank-accession number

Bip Sense
Antisense

5’-CGTGTTCAAGAACGGCCG-3’
5’-CGTAGACAGTACGACAGCAACTGT-3’

381 M19645

Chop Sense
Antisense

5’-GGCAGCTGAGTCATTGCC-3’
5’-GCAGATTCACCATTCGGTCA-3’

496 X71427

β-actin Sense
Antisense

5’-TTGTAACCAACTGGGACGATATGG-3’
5’-GATCTTGATCTTCATGGTGCTAGG-3’

292 X00351

Table 2.  The exposure dose required to kill 50% of NHEK （LD50） at each wavelength.

Wavelength （nm） 235 242 250 261 269 280 292 300 306 310

CV staining 7.03 3.63 2.58 1.68 1.64 2.46 4.42 16.44 70.15 292.58

LD50 values show in mJ/cm2.
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increasing radiant exposure in a manner described by a cumulative log normal distribution 

function.  The LD50 values were obtained from this function （Table 2）.  Action spectra were 

constructed by plotting the LD50 against wavelength （Fig. 1）.  They have a broad minimum 

in the approximate range of 250-280 nm, showing that UV is the most hazardous in this 

range, rising steeply toward both longer and shorter wavelengths.

Effect of EPC-K1 and EGCG on 310 nm-induced NHEK viability

　The cell viability was decreased to 30% of control NHEK （no exposure） after 48 h of 

310-nm irradiation at 660 mJ/cm2.  Following the addition of 0.1 mM EPC-K1 and 0.1 mM 

EGCG, the cell viabilities signi�cantly increased to 117% （n = 12） and 110% （n = 8） of 

control activity, respectively （Fig. 2）.  Thus, EPC-K1 at 0.1 mM and 0.1 mM EGCG did not 

in�uence control cell viability.

Effect of EPC-K1 and EGCG on 310 nm-induced ER stress in NHEK

　The Chop mRNA/β-actin mRNA ratio in control NHEK was 0.24 ± 0.05 （n = 7）.  At 

6 h after 660 mJ/cm2 of 310-nm irradiation, the Chop mRNA/β-actin mRNA ratio increased 

to 1.19 ± 0.28 （487% of control, n = 7）.  Following the addition of 0.1 mM EPC-K1 and 

0.1 mM EGCG after irradiation, Chop mRNA/β-actin mRNA ratios were 1.00 ± 0.1 and 

1.31 ± 0.05, respectively.  When 0.1 mM EPC-K1 and 0.1 mM EGCG were added to the 

NHEK, the ratios were 0.64 ± 0.08 and 0.91 ± 0.2, respectively （Fig. 3a）.
　The Bip mRNA/β-actin mRNA ratio in control NHEK was 0.399 ± 0.08 （n = 7）, and 

increased to 1.13 ± 0.16 （283% of control, n = 7） following 660 mJ/cm2 of 310-nm irradia-

tion.  Bip mRNA/β-actin mRNA ratios were not signi�cantly affected by 0.1 mM EPC-K1 

Fig. 1.   The ordinate shows the exposure dose required to kill 50% of cells 
（LD50, mJ/cm2）. The abscissa shows wavelength （nm）. LD50 was 
derived from the cell viability. Data show the average±SD for 3-6 
independent experiments. 
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and 0.1 mM EGCG addition （0.79 ± 0.11 and 0.68 ± 0.199, respectively）.  When 0.1 mM 

EPC-K1 and 0.1 mM EGCG was added to the NHEK, the ratios were 0.56 ± 0.18 and 0.35 

± 0.16, respectively （Fig. 3b）.

Discussion

　This study of UV （235-310 nm） action spectra for NHEK determined LD50 from cell 

viability by CV staining at each exposure wavelength.  The lowest LD50 was obtained with 

1.64 mJ/cm2 exposure at 269 nm.  UVB （290-320 nm） radiation exposure on mouse skin is 

directly involved in cyclobutane pyrimidine dimer formation, which was implicated in photo-

carcinogenesis 24）.  The optimal wavelengths for formation of cyclobutane pyrimidine dimers 

are 270-295 nm 25）, thus NHEK death following exposure at 269 nm could be due to DNA 

damage.  UV radiation-induced cell injury results from DNA damage and/or photochemical-

induced oxidative stress 25, 26）.  Various chromophores contained in human skin could act as 

endogenous UV sensitizers of photo-oxidative stress 7, 27）, by generating ROS that damage 

DNA and cellular membranes, and promote carcinogenesis 4-7, 28）.  UV energy is absorbed 

by sensitizers following initial formation of an excited state and their subsequent interaction 

with substrate molecules （type I photochemical reaction） or molecular oxygen （type II pho-

tochemical reaction） by energy and/or electron transfer 29）; both resulting in ROS production.  

Wondrak et al 30） reported that extracellular matrix proteins could also act as sensitizers of 

Fig. 2.   Comparison between protective effect of EPC-K1 and EGCG addition on 310-
nm irradiation of NHEK. After the irradiation （660 mJ/cm2）, 0.1 mM EPC-K1 
or 0.1 mM EGCG was added to the medium. After a 48-h incubation, NHEK 
viability was measured by CV staining. Cont = without irradiation ; UV = 
irradiated untreated cells ; EPC-K1 = 0.1 mM EPC-K1 added to cells without 
irradiation; EGCG = 0.1 mM EGCG added to cells without irradiation. Results 
are given as a percentage of control values (n = 19) and represent the mean ± 
SE of seven independent experiments. ＊P＜ 0.05, ＊＊P＜ 0.01.
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photo-oxidative stress.

　ROS production has been detected in cultured human skin cells 31-33）, skin homogenates 34）, 

and intact skin 35） following exposure to UV irradiation.  ROS activate the receptors in kera-

tinocytes or �broblasts for growth factors or cytokines.  This upregulates AP-1 via activation 

of transduction signaling pathways, overexpression of matrix metalloproteinase （MMP）, and 

decreased levels of collagen I and III in extracellular matrix, lead to skin photoaging 31）.

　This study investigated the hazard of 310 nm to NHEK and demonstrated a preventive 

effect of EPC-K1 and EGCG, which both effectively reduced NHEK death.  Bip and 

CHOP mRNA expressions were signi�cantly increased by 310-nm exposure （Fig. 3）.  Fol-

Fig. 3.   Effect of EPC-K1 and EGCG on Chop and Bip mRNA in NHEK 
after 310-nm irradiation. After a 6-h incubation, （a） Chop mRNA 
and （b） Bip mRNA were measured by RT-PCR. Each value was 
normalized against β-actin mRNA. Cont = without irradiation ; UV = 
irradiated untreated cells ; EPC-K1 = 0.1 mM EPC-K1 added to cells 
without irradiation ; EGCG = 0.1 mM EGCG added to cells without 
irradiation. Results are given as a percentage of control values (n = 7) 
and represent the mean ± SE of three independent experiments. ＊P＜
0.05, ＊＊P＜ 0.01.
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lowing ER stress, a series of signaling pathways, referred to as the ER stress response or 

unfolded protein response （UPR）, is activated.  Accumulation of unfolded or misfolded pro-

teins are sensed by resident transmembrane sensors and normally held in an inactive state 

by the binding of intraluminal ER chaperones, especially Bip 36, 37）.  Increased CHOP expres-

sion is also a hallmark of the ER stress response.  Severe or prolonged ER stress induces 

apoptosis 36, 37）.  Sunburn is a cutaneous reaction following excessive exposure to solar UV 

radiation and the subsequent death of epidermal keratinocytes primarily by apoptosis 2, 8）.  

EPC-K1 and EGCG did not affect the expressions of Bip and CHOP mRNA in this study.

　EGCG is a potent antioxidant and has photochemopreventive effects in several in vitro 

and in vivo systems 19-21）.  Katiyar et al 38） reported that EGCG inhibits UVB （290-320 nm）
-induced H2O2 production and activation of mitogen-activated protein kinase （MAPK） 
signaling pathways.  EPC-K1 is also suppressed by ROS 16）, therefore, the inhibition of 310 

nm-induced injury in NHEK by EPC-K1 could involve MAPK signaling.  In addition, EPC-

K1 suppresses lipid peroxide production 17） and inhibits phospholipase A2 activity 18）.  Future 

studies should therefore investigate the molecular mechanism underlying the potential photo-

protective effect of EPC-K1 on skin.

　Skin in�ammation from narrow-band UVB exposure is blocked by sunscreen and can be 

treated by steroidal anti-in�ammatory drugs.  The simple model system described here could 

be used to study new-generation therapeutic agents and determine their protective effect 

from UV irradiation injury of skin.
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