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Abstract : There is an increasing number of patients with severe liver disease that 
requires whole organ transplantation or living-related split liver transplantation.  
This has resulted in a shortage of donor organs, which is particularly problematic 
and still awaits resolution.  Bioarti�cial liver （BAL） support systems have been 
developed with the aim of supporting patients with life-threatening liver disease 
until their liver recovers.  Here, we describe a high performance three-dimensional 
rat hepa tocyte culture system using a radial-�ow bioreactor （RFB） with a polyvinyl 
alcohol （PVA） membrane as a small-scale BAL support system.  Hepatocytes from 
male Sprague-Dawley rat livers were isolated and divided into two groups as fol-
lows.  Group A : isolated hepatocytes were maintained in culture medium as con-
trols ; and group B : isolated hepatocytes were injected into the medium cham ber 
of the RFB-PVA culture system.  Sampling was carried out every 48 h to ana lyze 
the concentrations of ammonia and albumin in the medium.  Light and elec tron 
microscopic examination of hepatocytes explanted from the PVA membrane was 
also performed.  Albumin production and urea synthesis by cells in group B were 
both signi�cantly higher than in group A.  Hematoxylin-Eosin staining of the cells 
in group B showed that three-dimensional cell masses were attached to the PVA 
membrane.  It also showed that the cells were stably proliferating in the porous 
spaces of the PVA.  Scanning electron microscopic images of group B also showed 
clusters of hepatocytes attached to the PVA membrane.  Hepatocyte clus ters grow-
ing in the RFB-PVA culture system retained their biological function and were 
stable in the porous spaces of the PVA membrane.  This cell culture system may 
be useful for the development of new BAL support systems.
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Introduction

　Acute liver failure （ALF） is a signi�cant health problem that is increasing in incidence in 
Japan.  It is frequently characterized by rapid deterioration that leads to coma and death.  The 
only effec tive therapy is liver transplantation.  Increased numbers of patients with liver disease 
as well as expanding indications have led to an increase in the number of liver transplants.  This 
has resulted in a chronic worldwide shortage of donor livers and an increase in both the waiting 
time and the mortality rate for prospective transplant recipients.
　Liver function support strategies have been developed because of the scarcity of donor organs.  
These strategies aim to support patients with borderline functional liver cell mass either until 
an appropriate transplantable organ becomes available or until the liver recovers from injury 1-8）.  
Examples of non-biological systems that have been developed include plasma exchange 9-12）, albu-
min dialysis 13-15）, hemo （dia） �ltration 16-18）, and sorbent-based devices 16-25）.  These systems are 
able to remove the toxins that accumulate because of hepatic failure, but their utility is limited 
by their inability to provide some liver-speci�c functions.  In contrast, hepatocyte-based devices 
are able to provide whole liver function, including detoxi�cation, biosynthesis, and biotransforma-
tion 5, 26, 27）.  The development of clinically effective bioarti�cial liver （BAL） devices requires a 
high-density device that contains highly functional, viable cells.  
　The function of cultured hepatocytes can improve when they are grown as a three-dimensional 
（3D） culture rather than as a monolayer.  The 3D culture conditions more closely resemble the 
normal tissue environment than those in culture dishes.  We used a radial-�ow bioreactor （RFB） 
to create 3D culture conditions.  The RFB is a cylindrical culturing reactor �lled with a solid 
matrix.  The medium is pumped from the periphery toward the reactor center at an increasing 
rate, which is suf�cient to supplement the cells with oxygen and nutrients.  The matrix consists 
of a polyvinyl-alcohol （PVA） membrane with a high pore density that allows for a large surface 
area for cell attachment and the reduction of shear force caused by direct �ow of the medium 
toward the cells 28-32）.  
　In this study, we investigated the functional performance of a small-scale 3D culture system 
for hepatocytes using a RFB with a PVA membrane.

Materials and methods

Chemicals

　Dulbecco’s Modi�ed Eagle medium （DMEM）, Hepes, bovine serum albumin （BSA）, galac-
tose, L-proline, nicotinamide, ascorbic acid, dexamethasone, fetal bovine serum （FBS）, trypsin-
EDTA, calcium chloride, sodium alginate, and phosphate-buffered saline （PBS） were purchased 
from Sigma Chemical Co. （St. Louis, MO, USA）.  Rat tail collagen type I was purchased from 
Col laborative Biomedical Product, （Bedford, MA, USA）.  Penicillin and streptomycin （PC / ST） 
were purchased from Omega Scienti�c （Tarzana, CA, USA）.  Recombinant human epidermal 
growth factor （rhEGF） was purchased from R&D （Minneapolis, MN, USA）.  Insulin-Transferrin-
Selenium （ITS） was purchased from Gibco BRL （San Francisco, CA, USA）.  NaCl, KCl, 
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NaHCO3, and NaH2PO4 were purchased from Wako Chemical Co （Tokyo, Japan）.

Animals

　This study was approved by the Committee on Animal Ethics in the Care and Use of Labo-
ratory Animals of the Showa University Medical School.  Male Sprague-Dawley rats （Saitama 
Experimental Animals Supply Co., Ltd, Saitama, Japan） weighing approximately 200-250 g were 
housed for more than 1 week with 12-h light / dark cycles prior to surgery.  Animals were 
housed in a climate controlled （21℃） room with a 12-h light / dark cycle and were given tap 
water and standard laboratory rat chow ad libitum.  All operations were performed under gen-
eral anesthesia （ether） using a sterile surgical technique.  

Hepatocyte isolation

　Hepatocytes were harvested by a two-step EDTA / collagenase digestion in situ, as described 
previously 33）.  Brie�y, under general anesthesia and portal vein cannulation, in vivo perfusion of 
the liver was performed with an EDTA / collagenase solution at 37℃.  The liver was excised 
and transferred to a culture dish containing DMEM supplemented with 10% FBS at 4℃.  The 
capsule was peeled back from all lobes and the tissue was gently combed to isolate and suspend 
hepatocytes in the DMEM solution.  Hepatocytes were filtered through mesh, suspended in 
DMEM solution and centrifuged at 50×g for 5 min.  The cell viability as assessed by the trypan 
blue exclusion test was greater than 80% after enrichment through a Percoll density gradient.

Radial �ow bioreactor

　RFBs with either a 5 ml or 30 ml capacity as well as the RFB culture system were used in 
this study （ABLE Corporation, Tokyo, Japan）32, 34, 35）.  Porous PVA resin （Muromachi Kagaku, 
Tokyo, Japan） was used as the scaffold in the RFB （Fig. 1A）.  The inner space for the scaffold 
in the 5-ml RFB employed a central spiral coil with a circulation of 3 mm, and was �lled with 
porous PVA resin.  Isolated cells were injected into the medium chamber of the RFB culture 
system, which was �lled with DMEM supplemented with 10% FBS （pH 7.6）.  The medium was 
circulated between the RFB and the medium chamber using a circulation pump （Fig. 1B）.  The 
cells remained attached to and grew on the scaffold while the medium was circulated.  The 
concentration of ammonia was assayed using a urea nitrogen diagnostic kit （Biopharmigen） in 
samples of medium taken at 48 h intervals.  The albumin concentration in the medium is mea-
sured using the Rat Albumin Enzyme Immunoassay Kit （Maassy Cedex）.

Floating culture

　A floating culture system was used to culture hepatocytes （SCHOTT Nippon K.K, Tokyo, 
Japan） using a 100 ml medium bottle and a magnetic stirrer spinning at a rate of 150-200 rpm 
（Fig. 1C）.  Hepatocytes were suspended in the culture medium, which allowed the 3D cell 

culture to proceed.
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Measurement of albumin secretion

　Aliquots of culture medium were collected at 1, 3, 5, and 7 days of culture and the albumin 
concentration was assayed using a competitive enzyme linked immunosorbent assay （ELISA） 
using the Rat Albumin Enzyme Immunoassay Kit.  Briefly, samples and the standard were 
seeded respectively into a 96-well microplate.  Whereupon 0.05 ml of rat albumin AchE together 
with 0.05 ml rat albumin antiserum was added to each well.  The plate was covered with plastic 
�lm and incubated for 16 h at 4℃.  Ellman’s Reagent （0.2 ml） was then added to the wells, 
which were incubated with shaking on an orbital shaker in the dark at room temperature for 
20-30 min.  The absorbance of each well was read between 405 nm and 414 nm （Wellreader SME 
3400 of Iwaki Glass Co., Ltd, Shizuoka, Japan） and the albumin concentration was calculated.

Measurement of urea nitrogen synthesis

　A �nal concentration of 2.0 mm ammonium chloride was added to the culture medium at 1, 3, 
5, and 7 days.  After incubation for 6 h, the urea nitrogen concentration was measured using a 
urea nitrogen diagnostic kit （Biopharmigen） and the absorbance was measured using a spectro-
photometer （UV-1200, Shimadzu Co., Ltd, Kyoto, Japan） to determine urea synthesis.

Fig. 1.  Schematic illustrations of the two culture systems used
（A） Structure of the reactor : The polyvinyl-alcohol （PVA） scaffold is placed in 
the reactor as a support for seeding hepatocytes. Culture medium flows from the 
peripheral zone to the center inside the reactor. （B） The radial-flow bioreactor 
（RFB） system : RFBs with a reactor volume of 5 ml was used for the 3-D culture 
of hepatocytes in a CO2 incubator. Dissolved oxygen and upstream static pressure 
were measured to monitor the condition of hepatocytes in the bioreactor. （C） 
Floating culture system : The medium reservoir has a volume of 100 ml and contains 
a magnetic stirrer bar inside the reservoir that spins at 150-200 rpm. Hepatocytes 
were suspended in the culture medium and were cultured in three dimensions.

A

B C
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Histological studies

　Explanted hepatocytes from the PVA membrane were �xed in 10% formaldehyde for histo-
logical examination.  Light microscopy was performed on paraf�n-embedded sections stained with 
hematoxylin-eosin （H-E） and periodic acid-Schiff （PAS） stain.

Immunohistochemical staining of albumin

　The hepatocytes were cultured on the PVA scaffold in the 5 ml RFB and the scaffolds were 
then removed from the reactor and �xed with 20% formalin neutral buffer solution （pH 7.4 ; 
Wako Chemicals, Osaka, Japan） at 4℃ for 1 h.  The cells on the scaffold were washed twice 
with PBS, and dehydrated by treatment with a series of solutions with increasing concentrations 
of ethanol.  The dehydrated cell-scaffold material was embedded in resin using the Historesin 
Plus Embedding Kit （Leica, Heidelberg, Germany）.  Sections of 5 µm thickness were prepared 
and each section was stained with toluidine blue and observed under a microscope （BF-50 ; 
Olympus, Tokyo, Japan）.  

Ultrastructual  examination

　After removing the cultured hepatocytes, the ultrastructure of the PVA membrane was exam-
ined using scanning electron microscopy （SEM）.  The PVA membranes were treated for SEM 
analysis by �xation with 2 % glutaraldehyde （pH 7.4） at 4℃ for 24 h.  The membranes were 
then washed and the post-�xed cells were dehydrated through a graded alcohol series, dried in 
hexamethyldisilazane and sputter coated with gold palladium and examined in a VE-7800 Key-
ence SEM.

Statistical analysis

　Values are expressed as mean ±  standard deviation.  Statistical signi�cance of the differences 
between the two groups was determined using Student’s t-test.  

Results

Hepatocyte function in the RFB and the �oating culture system

　This study cultured hepatocytes in either a 5 ml RFB using a PVA scaffold or a floating 
culture system and assessed the cellular function of the hepatocytes under these conditions by 
measuring the synthesis of albumin and urea.  A time course of albumin concentration in the 
hepatocyte RFB-PVA culture system compared to the �oating culture system showed signi�cantly 
higher albumin production in the RFB-PVA culture system at all time points examined （Fig. 2）.  
Urea synthesis by hepatocytes in the RFB-PVA culture system was also signi�cantly higher than 
in the �oating culture system at all time points examined （Fig. 3）.

Morphological features

　Thin sections of the scaffolds were prepared after hepatocyte culture and were studied micro-
scopically.  Representative photomicrographs of the sections show 3D aggregates of cells attached 
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to the PVA membrane, and demonstrate that the cells were proliferating stably in the porous 
spaces of the PVA （Fig. 4A）.  Immunohistochemical studies showed that hepatocytes cultured in 
the RFB-PVA culture system expressed PASs and Albumin at least 7 days after cultivation （Figs. 
4B, C）.

Electron microscopy

　A representative SEM image shows the PVA membrane alone （Figs. 5A, B） and well-attached 
clustered hepatocytes on the PVA membrane （Figs. 5C, D）.  The hepatocytes cultured in the 
RFB-PVA culture system formed cell clusters that were 80–200 mm in diameter.  These cell clus-
ters grew within the pores of the PVA membrane over a period of 3 days （Fig. 5D） and were 
equally distributed throughout the scaffold （Fig. 5C）. 

Fig. 2.  Albumin production by cells cultured in the 
RFB and the floating culture system. Data 
are expressd as mean ±  SD （n＝3）. Group 
A : floating culture system, Group B : RFB-
PVA culture system. （＊P＜0.05 compared with 
Group A）.

Fig. 3.  Urea synthesis by cells cultured in the RFB and 
the floating culture system.  Data are expressed 
as mean ±  SD （n＝3）.  Group A : floating 
culture system, Group B : RFB-PVA culture 
system. （＊P＜0.05 compared with Group A）.

Fig. 4.  Photomicrograph of hepatocytes cultivated on the RFB-PVA culture membrane
A: H-E stained sections of hepatocytes cultivated for 7 days on the PVA membrane （×200）.
B : PAS stained sections of hepatocytes cultivated for 7 days on the PVA membrane （×200）.
C : Albumin stained sections of hepatocytes cultivated for 7 days on the PVA membrane （×200）.
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Discussion

　ALF is a severe disease that, despite recent therapeutic advances, remains associated with sig-
ni�cant morbidity and mortality.  Recently, liver transplantation has become a remarkably effec-
tive life-saving treatment for patients with fulminant hepatic failure and end-stage chronic liver 
disease 1-5）.  Increases in both the number of liver transplantation procedures and the indications 
for the procedure have resulted in a chronic worldwide shortage of organs for transplantation.  
This is the situation despite alternative techniques being employed such as split-liver and living 
donor transplantation.  As a result, waiting times and mortality for prospective transplant recipi-
ents have also increased.  
　One possible alternative to transplantation in some patients is the BAL support system, which 
can provide provisional hepatic function until a transplantable liver becomes available.  In the 
present study, we tested the development of a small-scale BAL support system using a PVA 
membrane for the 3D culture of hepatocytes in a RFB.  Primary rat hepatocytes actively sur-
vived and formed cell clusters in the porous scaffolds more ef�ciently than in a �oating culture 
system.  The cultured hepatocytes exhibited excellent cellular function as evidenced by the syn-
thesis of albumin and urea in the RFB-PVA culture system.  Hepatocytes cultivated for 7 days 

Fig. 5.   Scanning electron microscopic image of cell clusters of rat 
hepatocytes growing on the PVA scaffold

A, B :  Scanning electron microscopic image of the porous PVA scaffold at 
3 days after cell seeding （bar, A : 47.6 µm, B : 10.0 µm）.

C, D :  Scanning electron microscopic image of cell clusters of rat 
hepatocytes growing on the PVA scaffold.  Rat hepatocytes are 
attached to the pores of the PVA scaffold.

Scanning electron microscopic image of cell clusters of HepG2 cells formed 
on the PVA membrane at 3 days after seeding （bar, C : 18.1 µm, D : 
6.66 µm）.
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in the RFB-PVA culture system secreted an eight-fold greater amount of albumin and a �ve-fold 
greater amount of urea than in the �oating culture system.
　Various types of bioreactors have been developed to support the growth of high-density 3D 
cell cultures.  In particular, cultures using either microcarriers 41-44） or hollow-�ber modules 31, 45, 46） 
have been described.  
　In 2004, Demetriou et al reported the development of the HepatAssistⓇ BAL device 26）.  An 
early version of the HepatAssistⓇ was the first BAL device tested in FDA-approved phase 
I / II / III clinical trials （Arbios Systems, Inc., Pasadena, CA, USA）.  The HepatAssistⓇ BAL 
device incorporated collagen-coated dextran microcarriers that provided the hepatocytes with an 
attachment surface.  RFBs are one type of bioreactor that can be used for high-density 3D cell 
culture.  In the RFB, liquid medium �ows convergently from the periphery to the center （Fig. 
1A）, enabling equally ef�cient gas and nutrient exchange in different parts of the scaffold.  The 
use of RFBs can enhance the cellular function of the cultured cells 34, 35）.  Hongo et al dem-
onstrated that the cell density in the RFB was 4–15 fold higher than in microcarrier or hollow-
�ber cultures 32）.
　In this study, we focused on using an RFB that enables the growth of a highly functional 3D 
culture.  The performance of RFBs largely depends on the inclusion of a scaffold to provide a 
support matrix for cell attachment.  Miyoshi et al found that fetal liver cells could be cultivated 
at high density on a polyvinyl foam （PVF） resin 47）.  They were able to maintain a high-density 
cell culture （7×107 cells / cm3） over 30 days of culture and the functioning of the cells was 
assayed by measuring the albumin production rate.  They noted that after the �rst two weeks 
the rate of albumin production rate 47）.  Kataoka et al developed a new porous organic inor ganic 
hybrid scaffold consisting of tetraethoxysilane （TEOS） and polydimethylsiloxane （PDMS） and 
employed a sol–gel method with sieved sucrose particles that acted as a porogen 35）.  This hybrid 
material was more suitable than PVA scaffolds to support the culture of the human HepG2 
hepatocellular carcinoma cell line that was used in that study.  We propose that primary hepato-
cytes should be used as a cell source rather than a transformed cell line such as HepG2 because 
cell lines are likely to have a reduced level of liver-speci�c function.  In a preliminary study, 
we used two other types of scaffolds in the RFB, with porous beads composed of either silica 
or hydroxyapatite 32）.  Primary hepatocytes could not attach to beads made from either of these 
materials （data not shown）.  Therefore, we selected a PVA membrane for as a solid support to 
culture primary hepatocytes in the RFB.  
　In this study, we observed the synthesis of albumin and urea by primary hepatocytes grown in 
the RFB-PVA culture system, which represents the appropriate functioning of these cells.  Thin 
sections of the scaffolds were examined microscopically, with H-E sections showing that cells 
were stably attached to the 3D PVA membrane, and these cells were proliferating in the porous 
spaces of the PVA.  Moreover, SEM images showed clustered hepatocytes attached to the PVA 
membrane.  Therefore, we propose that hepatocytes and hepatocyte-derived cell lines exhibit 
improved speci�c cellular functions in cell clusters formed in the RFB with a PVA membrane 
than in other systems tested to date.  
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　As our understanding of the pathophysiology of liver failure improves, we propose that the 
RFB system will continue to be developed.  This system should provide : （i） detoxification ; 
（ii） replenishment of specific liver functions ; and （iii） stimulation of hepatic regeneration in 

combinations that are appropriate for the individual patient.  The RFB-PVA BAL could be used 
to treat various forms of liver failure or patients with liver failure at various stages of illness.  
Further studies of this promising technology are required to assure that it can be scaled-up to 
provide a clinically-useful treatment option.
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