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ABSTRACT 

Pharmacological agents that elevate dopamine and substance P concentrations have been 

suggested to prevent aspiration pneumonia and improve impaired swallowing processes. 

However, little is known about the effects of such agents on swallowing activities induced in 

motor nerves innervating the pharyngeal muscles. In the present study, we examined the 

effects of imidapril, cilostazol and amantadine, which are often prescribed for swallowing 

disorders, on swallowing motor activity. We recorded efferent activity of the cervical vagal 

nerve (VN), hypoglossal nerve (HN), and phrenic nerve (PN) using arterially perfused rats 

aged between postnatal days 21–35. VN activity was used for evaluation of swallowing motor 

activity. Injection of 1.25 ml of distilled water into the oral cavity or electrical stimulation of 

the superior laryngeal nerve (SLN) evoked synchronized swallowing bursts in the VN and 

HN, while inspiratory discharges were inhibited in all of those nerves. Administration of 

imidapril (60 ng/ml) but not cilostazol (2.5 µg/ml) and amantadine (200 ng/ml) to the 

perfusate increased the mean peak amplitude of orally evoked swallowing bursts in the VN. 

Such increase in the peak amplitude by imidapril was antagonized by administration of the 

NK1 receptor antagonist aprepitant (2 mg/ml) or the D1 receptor antagonist LE300 (2 mg/ml). 

In contrast, neither imidapril nor cilostazol caused a significant increase in swallowing bursts 

evoked by electrical stimulation of the SLN. These results suggest that imidapril 

administrations may improve impaired swallowing by enhancing pharyngeal muscle activities 

via an increase in substance P and dopamine.
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1. Introduction 

Oropharyngeal dysphagia is associated with increased risk of aspiration pneumonia, 

malnutrition and dehydration, and often occurs following various diseases such as acute 

cerebral and brainstem stroke, Parkinson's disease, schizophrenia, and sarcopenia. Although 

mechanisms generating swallowing disorders are not sufficiently clarified, pharyngeal 

neuromuscular dysfunction could contribute to swallowing disorders. The neural circuit 

controlling swallowing is located in the brainstem, and sensory inputs to the neural circuit 

from oropharyngeal mucosa and muscles regulate oropharyngeal muscle activity during 

swallowing (Miller, 2008). In the pharyngeal phase in swallowing, which is particularly 

important in relation to aspiration, sensory inputs trigger the subconscious swallowing reflex 

and modulate the sequential motor activity of muscles that transport the bolus through the 

pharynx (Steele and Miller, 2010). 

A neuropeptide substance P that is stored in the peripheral ending of capsaicin-sensitive 

sensory nerve (Maggi and Meli, 1988) has been thought to be involved in regulation of the 

swallowing reflex by sensory inputs, because subcutaneous treatment of capsaicin, which 

could abolish substance P from the airway and upper digestive tract, attenuated the 

swallowing reflex in guinea pigs (Jin et al., 1994). Dopamine is a principal neurotransmitter 

to regulate substance P concentration. Actually, treatment of the dopamine D1 receptor 

antagonist decreased both the swallowing reflex and substance P-like immunoreactivities in 

the laryngeal and pharyngeal mucosa (Jia et al., 1998). Therefore, the following 

pharmacological agents, which increase substance P or dopamine, are suggested to improve 

impaired swallowing: angiotensin-converting enzyme (ACE) inhibitors, the 

phosphodiesterase type 3 inhibitor cilostazol, and the antiparkinson medication amantadine. 
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ACE inhibitors, which are the first-line drugs used for hypertension, increase the local 

substance P level by inhibiting its degradation (Sekizawa et al., 1996). Cilostazol promotes 

dopamine synthesis by inducing the synthesis of tyrosine hydroxylase. Amantadine is known 

to increase dopamine release and block dopamine re-uptake. Although the influences of these 

pharmacological agents on swallowing by long-term chronic administration have been 

investigated in both the clinical studies and animal experiments, their acute effects on the 

activity of the pharyngeal muscles are still unclear. 

Anesthesia is known to suppress pharyngeal muscle activity during swallowing and 

respiration. Ketamine, for instance, depressed cough reflex (Marshall and Wollman, 1980), 

which is an important protective reflex in the airway to prevent aspiration pneumonia. 

Moreover, the hypoglossal nerve activity during swallowing reflex elicited by electrical 

stimulation of the superior laryngeal nerve (SLN) was progressively depressed by increasing 

depth of anesthesia by nitrous oxide (Nishino et al., 1985). In situ arterially perfused rat 

preparations (Paton, 1996) have been used in some experiments to study the neural circuits 

involved in the generation of swallowing (Bautista and Dutschmann, 2014; Bautista et al., 

2014). This experimental model enabled us to study the swallowing activity without the 

depressant effects of anesthesia. The aim of the present study was to elucidate the effects of 

pharmacological agents prescribed for swallowing disorders on swallowing motor activity in 

the absence of anesthetics. 

 

2. Materials and methods 

All of the experiments were performed with the approval (No. 18029) of the Institutional 

Animal Care and Use Committee of Showa University, which operates under Japanese 

Governmental Law (No. 105) for the care and use of laboratory animals. All efforts were 
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made to minimize the suffering and number of animals used. 

 

2.1. Animal preparation 

Seventy-nine Wistar rats of either sex aged between 21 and 35 days were used in the 

present study. The weights ranged from 46 to 107 g. We modified the procedures for the 

preparation described in detail in Tachikawa et al. (2016). The rats deeply anesthetized with 

isoflurane were transected caudal to the diaphragm and immersed in ice-cooled Ringer’s 

solution (in mM: 125 NaCl, 3 KCl, 24 NaHCO3, 1.25 KH2PO4, 1.25 MgSO4, 2.5 CaCl2, 10 

dextrose). In the cooled Ringer’s solution, the cerebral cortex was removed from the rats. The 

thalamus and basal ganglia remained in the preparations. Preparations were then transferred to 

a recording chamber, and the descending aorta was cannulated with a double lumen catheter 

(1317-23WG, Covidien, Dublin, Ireland). Ringer’s solution containing 1.25% Ficoll 

(Sigma-Aldrich, St. Louis, MO) and heparin (10 unit/mL, Mochida, Tokyo, Japan) was 

retrogradely perfused using a roller pump (502S, Watson-Marlow, Falmouth, Cornwall, UK). 

The perfusate was continuously gassed with 5% CO2/95% O2 and warmed to 31–32 ºC using 

an in-line heater (TC324C; Warner Instruments, Hamden, CT). The aortic perfusion pressure 

was monitored via the second lumen of the catheter and maintained in the range of 30–50 

mmHg by adjusting the flow between 35 and 43 mL/min. 

 

2.2. Nerve recording 

Preparations were paralyzed using vecuronium bromide (1.5–2 µg/mL; Sigma-Aldrich) 

prior to the isolation of the peripheral nerves. Peripheral nerves on the left side were used for 

nerve recording. The vagus nerve (VN) was identified between the left common carotid artery 

and sternothyroid muscle. The hypoglossal nerve (HN) was identified under the mylohyoid 
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muscle. The phrenic nerve (PN) was isolated from the pleura. Each peripheral nerve was cut 

distally and the proximal end was held in bipolar suction electrodes (A-M Systems, Sequim, 

WA). All signals were amplified using a differential amplifier (DP-304; Warner Instruments), 

band-pass filtered (1–3k Hz), and stored on a computer using an analog-to-digital converter 

(CED micro 1401; Cambridge Electronic Design, Cambridge, UK) with version 8 of the 

Spike2 software (Cambridge Electronic Design). Additional digital filtering was applied using 

DC remove with a time constant of 0.1 s (Spike2 software) when necessary to remove 

movement artifact. The nerve activity was rectified and integrated with a time constant of 0.1 

s in the Spike2 software. 

 

2.3. Experimental protocol 

To evoke fictive swallowing, two stimulation methods were used. One is injection of 

distilled water into the oral cavity and the other is electrical stimulation of the SLN. For water 

injection, a narrow plastic tube (1 mm diameter) was inserted into the oral cavity and the 

caudal end was placed in the pharynx. Distilled water of 1.25 ml was injected for 10 seconds 

using syringe pump (CFV-3200, Nihon Kohden, Tokyo, Japan). For electrical stimulation, the 

SLN on the right side was identified between the trachea and the right common carotid artery 

and cut in the vicinity of the trachea. The proximal end was held into a bipolar suction 

electrode. Single pulse or repetitive pulses (5 Hz) of 100 µs duration was applied during the 

expiratory phase with the intensity of 10–500 µA using a Master-8 pulse generator and 

ISO-Flex stimulus isolator (AMPI, Jerusalem, Israel). Elicitation of fictive swallowing was 

performed three times at each of the following periods in each preparation: 5–30 min prior to 

drug administration (control) and 30–60 min after the drug administration. 
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2.4. Drug application 

All drugs were stored as stock solutions in distilled water. Stock solutions were diluted at 

least 1:1000 to the following concentration with perfusate before their application: imidapril 

hydrochloride (60 ng/ml, Sigma-Aldrich), cilostazol (2.5 µg/ml, Sigma-Aldrich), amantadine 

hydrochloride (200 ng/ml, Sigma-Aldrich), aprepitant (2 mg/ml, Sigma-Aldrich), LE300 (2 

mg/ml, TOCRIS Bioscience, Bristol, UK). 

 

2.5. Data analysis 

The integrated nerve activity in the VN was used to obtain the peak amplitude and 

duration of the swallowing bursts. All evoked swallowing bursts were measured and averaged. 

Values are presented as the mean ± standard error of the mean (SEM). Data obtained before 

and during drug application were subjected to the Wilcoxon signed-rank test. Differences in 

data between groups were analyzed using a Kruskal-Wallis one-way ANOVA. The ANOVA 

was followed by a Bonferroni post-hoc multiple comparison test when appropriate. 

Probability values of less than 0.05 were considered significant. Statistical analyses were 

conducted using SPSS 17.0J (SPSS Japan Inc., Tokyo, Japan) and Microsoft Excel 2011. 

 

3. Results 

3.1. Effects of pharmacological agents for dysphagia on swallowing motor activity evoked by 

water injection into the oral cavity 

We investigated the effects of pharmacological agents that often prescribed for 

swallowing disorders on the swallowing bursts evoked by injection of distilled water in the 

oral cavity. We recorded efferent nerve activity in the VN, HN and PN using suction 

electrodes. Prior to water injection, inspiratory motor discharges were observed in all of those 
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nerves in a synchronous manner (Fig. 1A). Injection of 1.25 ml distilled water in the oral 

cavity during the expiratory phase temporarily inhibited inspiratory discharge in all of those 

nerves, and evoked synchronized spindle-shaped swallowing bursts in the VN and HN (Fig. 

1B). The number of swallowing bursts varied in each preparation (5–26, 14.4 ± 3.4, n = 5). 

The swallowing bursts were more clearly observed in the VN than HN, and hence the 

swallowing bursts in the VN were used to evaluate the effects of the pharmacological agents.  

We first investigated the effects of the ACE inhibitor imidapril on the swallowing bursts. 

Administration of imidapril (60 ng/ml) into the perfusate increased the peak amplitude of the 

swallowing bursts (Fig. 2A). In pooled data from 9 preparations, the peak amplitude of the 

swallowing bursts was significantly increased by imidapril (4.1 ± 0.7 µV·s before imidapril vs. 

4.6 ± 0.6 µV·s during imidapril, the Wilcoxon signed-rank test, n = 9, P = 0.002, Fig. 2B), 

although the burst duration was not significantly changed by imidapril (0.49 ± 0.03 s before 

imidapril vs. 0.52 ± 0.03 s during imidapril, the Wilcoxon signed-rank test, n = 9, P = 0.507, 

Fig. 2B). 

Subsequently, we examined the effects of the phosphodiesterase type 3 inhibitor 

cilostazol. Administration of cilostazol (2.5 µg/ml) into the perfusate tended to increase the 

peak amplitude of the swallowing bursts in parts of preparations (Fig. 3A). However, in 

pooled data from 8 preparations, the difference of peak amplitude between before and during 

administration of cilostazol was not statistically significant (4.8 ± 0.6 µV·s before cilostazol 

vs. 5.5 ± 0.8 µV·s during cilostazol, the Wilcoxon signed-rank test, n = 8, P = 0.059, Fig. 3B). 

The burst duration was not changed by administration of cilostazol (0.45 ± 0.02 s before 

cilostazol vs. 0.47 ± 0.02 s during cilostazol, the Wilcoxon signed-rank test, n = 8, P = 0.167, 

Fig. 3B). 

Finally, we examined the effects of the dopamine re-uptake inhibitor amantadine. 
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However, in contrast to imidapril and cilostazol, amantadine (200 ng/ml) did not increase the 

peak amplitude of the swallowing bursts (Fig. 4A). In pooled data from 5 preparations, both 

the peak amplitude and the burst duration of the swallowing bursts were not significantly 

changed between before and during administration of amantadine (amplitude: 5.2 ± 1.2 µV·s 

before amantadine vs. 4.7 ± 0.7 µV·s during amantadine, the Wilcoxon signed-rank test, n = 5, 

P = 0.484, duration: 0.58 ± 0.04 s before amantadine vs. 0.62 ± 0.05 s during amantadine, the 

Wilcoxon signed-rank test, n = 5, P = 0.359, Fig. 4B). These results indicate that imidapril 

rather than cilostazol and amantadine acutely enhances the swallowing motor activity in the 

cervical VN. 

 

3.2. Effects of NK1 and D1 receptor antagonists on enhancement of swallowing motor activity 

by imidapril 

To investigate whether substance P or dopamine is involved in enhancement of 

swallowing motor activity by imidapril, we next examined the effects of NK1 and D1 

receptor antagonists on the swallowing bursts evoked by water injection. The concomitant 

administration of the selective NK1 receptor antagonist aprepitant (2 mg/ml) and imidapril 

(60 ng/ml) did not increase the peak amplitude of the swallowing bursts (Fig. 5A) in contrast 

to the administration of imidapril alone shown in Fig. 2A. The peak amplitude of the 

swallowing bursts normalized by the value before drug administration was significantly larger 

in the imidapril-administration group than in the aprepitant and imidapril-administration 

group and the vehicle group (imidapril: 1.19 ± 0.04, n = 9, aprepitant/imidapril: 0.91 ± 0.05, n 

= 5, vehicle: 0.81 ± 0.08, n = 5, Kruskal-Wallis one-way ANOVA and Bonferroni post-hoc 

multiple comparison test, imidapril vs. aprepitant/imidapril: P = 0.048, imidapril vs. vehicle: 

P = 0.006, Fig. 5B). The normalize peak amplitude in administration of aprepitant alone was 
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not different from that in the vehicle group (aprepitant: 0.89 ± 0.06, n = 5, Kruskal-Wallis 

one-way ANOVA and Bonferroni post-hoc multiple comparison test, P = 1.000, Fig. 5B).  

The concomitant administration of the selective D1 receptor antagonist LE300 (2 mg/ml) 

and imidapril (60 ng/ml) also did not increase the peak amplitude of the swallowing bursts 

(Fig. 5C). The peak amplitude of the swallowing bursts normalized by the value before drug 

administration was significantly larger in the imidapril-administration group than in the 

LE300 and imidapril-administration group (LE300/imidapril: 0.9 ± 0.06, n = 6, 

Kruskal-Wallis one-way ANOVA and Bonferroni post-hoc multiple comparison test, 

imidapril vs. LE300/imidapril: P = 0.041, Fig. 5D), although the normalized peak amplitude 

in administration of LE300 alone was not different from that in the vehicle group (LE300: 

0.82 ± 0.06, n = 5, Kruskal-Wallis one-way ANOVA and Bonferroni post-hoc multiple 

comparison test, P = 1.000, Fig. 5D). The all group was no significant difference in the 

normalized mean duration (Fig. 5B and 5D). These results suggest that both substance P and 

dopamine are involved in enhancement of swallowing motor activity by imidapril.  

 

3.3. Swallowing motor activity evoked by electrical stimulation of the SLN 

To determine whether imidapril and cilostazol also affect the swallowing bursts induced 

by electrical stimulation of sensory afferents as was the case for those induced by oral 

injection of water, we next examined the effects of imidapril and cilostazol on the swallowing 

motor activity evoked by electrical stimulation of the SLN. Each single pulse-stimulation with 

the intensity of 20–500 µA elicited a single swallowing burst in the VN and HN (Fig. 6A). In 

contrast, the repetitive stimulation of 5 Hz during 10 s inhibited inspiratory discharge in all 

recorded nerves and induced synchronized spindle-shaped swallowing bursts in the VN and 

HN (Fig. 6B). Both the normalized peak amplitude and duration of the swallowing bursts 
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evoked by single pulse-stimulation of 100 µA were not significantly different among the 

vehicle, the imidapril-administration group and the cilostazol-administration group 

(Kruskal-Wallis one-way ANOVA, peak amplitude: P = 0.809, duration: P = 0.611, Fig. 7A). 

Moreover, the normalized peak amplitude and duration of the swallowing bursts evoked by 

the repetitive stimulation of 100 µA were not also significantly different among the vehicle, 

the imidapril-administration group and the cilostazol-administration group (Kruskal-Wallis 

one-way ANOVA, peak amplitude: P = 0.618, duration: P = 0.239, Fig. 7B). As was the case 

with stimulation intensity of 100 µA, no significant difference was caused by administration 

of imidapril and cilostazol in both the peak amplitude and duration at other stimulus intensity 

(20–500 µA). The number of swallowing bursts evoked by the repetitive stimulation of the 

SLN was increased in stimulation intensity-dependent manner (Fig. 7C). However, 

administration of both imidapril and cilostazol did not significantly increase the number of 

swallowing bursts at all examined stimulation intensity (Fig. 7C). These results suggest that 

imidapril has different effects on swallowing induced by oral injection of water and 

swallowing induced by electrical stimulation of the SLN. 

 

4. Discussion 

In the present study, we demonstrated that short-term administration of the ACE inhibitor 

imidapril enhanced the swallowing bursts in the VN induced by injection of distilled water in 

the oral cavity using in situ arterially perfused rat preparations. Many previous studies have 

shown that long-term treatment with ACE inhibitors inhibited the occurrence of aspiration 

pneumonia (reviewed by El Solh and Saliba, 2007). For instance, patients with hypertension 

who had received ACE inhibitors (imidapril, enalapril or captopril) for 2 years had a 2.65-fold 

reduction in the risk of developing pneumonia compared with those who received other 
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antihypertensive drugs (calcium-channel blocker or β-blocker) (Sekizawa et al., 1998). Arai et 

al., (2003) reported that treatment with imidapril for 12 weeks significantly improved silent 

aspiration in normotensive elderly patients with stroke. In addition, the latency of the 

swallowing reflex was also improved by treatment with imidapril for 2 weeks in 

normotensive elderly patients with aspiration pneumonia (Nakayama et al., 1998). Our results 

suggest that the novel possibility of acute effects of imidapril to enhance activity of the 

pharyngeal muscle innervated by the VN in addition to its chronic effects on improving 

swallowing.  

In addition to the action of ACE that converts angiotensin I to angiotensin II, ACE 

metabolizes many other bioactive peptides, including bradykinin, substance P, chemotactic 

peptides and opioid peptides (Igic and Behnia, 2003; Skidgel and Erdös, 2004). Among these 

substances, substance P is considered to play important roles in regulating swallowing. Jin 

and co-workers (1994) reported that when substance P but not calcitonin gene-related peptide 

or acetylcholine is administered into the pharynx of guinea pigs, the number of induced 

swallowing reflex is increased. In contrast, the concentration of substance P in sputum of 

elderly patients with aspiration pneumonia was reduced to one-seventh of those in healthy 

elderly people (Nakagawa et al., 1995). Such decrease in substance P was also observed in 

serum of patients with hypertension and symptomless dysphagia, while treatment with 

imidapril recovered serum substance P concentration to control level (Arai et al., 1998). Our 

data showed that enhancement of swallowing bursts evoked by oral water injection after 

imidapril administration was antagonized by the selective NK1 receptor antagonist aprepitant. 

It is therefore plausible that an increase in substance P was involved in effects of imidapril on 

the swallowing bursts. 

Our data also showed that the selective D1 receptor antagonist LE300 antagonized 
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enhancement of the water injection-induced swallowing bursts by imidapril. These results 

suggest that imidapril does not only directly promote an increase in substance P by 

suppressing its degradation but may also affect dopamine system. Both ACE (Strittmatter et 

al., 1984) and angiotensin type 1 receptor (Rodriguez-Pallares et al., 2008) are present not 

only in the periphery but also in various brain regions including the substantia nigra with the 

highest densities. It was previously reported that chronic cerebral hypoperfusion in 

spontaneous hypertensive rats reduces putative dopaminergic neurons in the substantia nigra 

that show tyrosine hydroxylase immunoreactivity, which is improved by long-term 

administration of perindopril, an ACE inhibitor (Ikeda et al., 2015). Moreover, dopamine 

dialysate levels in striatum are elevated in rats treated for 1 week with perindopril via 

drinking water (Jenkins et al., 1997). Therefore, imidapril may increase extracellular 

dopamine concentration by inhibiting the function of ACE in the central nervous system 

including the basal ganglia.  

In the present study, neither imidapril nor cilostazol enhanced the swallowing bursts 

evoked by electrical stimulation of the SLN, while imidapril increased the peak amplitude of 

orally evoked swallowing bursts. There are two possible explanations for this discrepancy. 

First, imidapril increases substance P in the posterior oral cavity and the pharynx, which is 

likely to activate the NK1 receptors located on the sensory endings (Carlton et al., 1996). This 

may facilitate induction of the swallowing reflex induced by oral injection of water but does 

not increase the activation of the SLN caused by the electrical stimulation. Actually, when 

substance P is administered into the pharynx of guinea pigs, the number of induced 

swallowing reflex is increased (Jin et al., 1994), as mentioned above. Imidapril might also be 

able to increase substance P through the increase in dopamine content because chronic 

subcutaneous administration of D1 receptor antagonist reduces substance P content in the 
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laryngeal and pharyngeal mucosa in guinea pigs (Jia et al., 1998). 

Second, the sensory nerves innervating the posterior oral cavity and pharynx are involved 

in not only the vagus nerve but also the glossopharyngeal nerves. The most effective receptor 

regions for elicitation of the pharyngeal phase in swallowing are innervated both by fibers of 

the glossopharyngeal nerve which run through the pharyngeal plexus, and by the SLN of the 

vagus nerve (Miller 1982). Since the glossopharyngeal nerve afferent and the SLN afferent 

terminate in the separate areas in the nucleus solitary tract and almost did not overlap 

(Sweazey and Bradley, 1986), the neural circuit underlying swallowing reflex induced by 

sensory inputs via afferent fibers in the SLN may be, at least in part, different from that via 

afferent fibers in the glossopharyngeal nerve. Thus, it is possible that imidapril enhances the 

swallowing reflex induced by activation of the glossopharyngeal nerve during the oral water 

injection but not by activation of the SLN during the water injection and electrical stimulation. 

Since imidapril suppresses degradation of substance P, substance P may be increased in the 

central nervous system. Furthermore, administration of the non-selective dopamine receptor 

agonist in rats increases expression of substance P in the striatum (Li et al., 1987). Therefore, 

dopamine increased by imidapril may also increase substance P in the central nervous system. 

In this case, it is possible that the increase in substance P in the central nervous system may 

also contribute to enhancement of swallowing burst induced by activation of the 

glossopharyngeal nerve. 

Improvement of swallowing by administration of cilostazol and amantadine has been 

reported in both clinical studies and animal experiments. In a rat chronic cerebral hypofusion 

model, the number of swallows was improved by administration of cilostazol for 2–6 weeks 

(Zhang et al., 2009) or amantadine for 6 weeks (Ikeda et al., 2015). Although the effect of 

cilostazol was associated with an increase in tyrosine hydroxylase in the substantia nigra and 
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substance P in the striatum and the effect of amantadine was accompanied by an increase in 

substance P in the striatum, neither cilostazol nor amantadine significantly enhanced the 

swallowing bursts and increased the in the present study. Thus, it is possible that long-term 

administration may be necessary for cilostazol and amantadine to enhance swallowing or both 

drugs can only be effective on the patient with swallowing disorder. 

 

5. Conclusion 

We found that short-term administration of imidapril increased the peak amplitude of 

orally evoked swallowing bursts in the VN. Such increase in the peak amplitude was 

antagonized by administration of both the NK1 receptor antagonist and the D1 receptor 

antagonist. Our data suggest that imidapril may improve impaired swallowing by enhancing 

pharyngeal muscle activities via an increase in substance P and dopamine. 
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Figure legends 

Fig. 1. Swallowing motor activity evoked by injection of distilled water in the oral cavity. A: 

An example of VN, HN, and PN activity before injection of distilled water. Original and 

integrated traces are shown for each nerve. B: Representative fictive swallowing elicited by 

oral injection of 1.25 ml distilled water. A black bar shows the period of oral injection of 

distilled water. Oral injection evoked sequential swallowing bursts (black arrows) in the VN 

and HN. 

 

Fig. 2. Effects of imidapril on swallowing motor activity evoked by injection of distilled 

water into the oral cavity. A: Representative swallowing bursts in the VN before (Control, left 

traces) and after (Imidapril, right traces) administration of imidapril (60 ng/ml) in a 

preparation. B: The summarized peak amplitude (left) and duration (right) of the swallowing 

bursts before and after administration of imidapril (n = 9). Each bar graph and vertical bar 

indicate mean and SEM. An asterisk shows significant difference between before and after 

administration of imidapril (P ˂ 0.05). Black dots indicate raw data in each preparation. 

 

Fig. 3. Effects of cilostazol on swallowing motor activity evoked by injection of distilled 

water into the oral cavity. A: Representative swallowing bursts in the VN before (Control, left 

traces) and after (Cilostazol, right traces) administration of cilostazol (2.5 mg/ml) in a 

preparation. B: The summarized peak amplitude (left) and duration (right) of the swallowing 

bursts before and after administration of cilostazol (n = 8). Each bar graph and vertical bar 

indicate mean and SEM.  
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Fig. 4. Effects of amantadine on swallowing motor activity evoked by injection of distilled 

water into the oral cavity. A: Representative swallowing bursts in the VN before (Control, left 

traces) and after (Amantadine, right traces) administration of amantadine (200 ng/ml) in a 

preparation. B: The summarized peak amplitude (left) and duration (right) of the swallowing 

bursts before and after administration of amantadine (n = 5). Each bar graph and vertical bar 

indicate mean and SEM. 

 

Fig. 5. Effects of NK1 and D1 receptor antagonists on imidapril-induced activation of 

swallowing motor activity. A: Representative swallowing bursts in the VN before (Control, 

left traces) and after (Aprepitant/imidapril, right traces) concomitant administration of 

imidapril (60 ng/ml) and an NK1 receptor antagonist, aprepitant (2 mg/ml). B: The 

normalized peak amplitude (left) and duration (right) of the swallowing bursts in four groups 

(vehicle, imidapril, aprepitant, aprepitant/imidapril). In each preparation, the data were 

normalized at the peak amplitude or duration before drug administration. Each Bar graph and 

vertical bar indicate mean and SEM. †P < 0.05, vehicle vs. imidapril, imidapril vs. 

aprepitant/imidapril. C: Representative swallowing bursts in the VN before (Control, left 

traces) and after (LE300/imidapril, right traces) concomitant administration of imidapril (60 

ng/ml) and a D1 receptor antagonist, LE300 (2 mg/ml). D: The normalized peak amplitude 

(left) and duration (right) of the swallowing bursts in four groups (vehicle, imidapril, LE300, 

aprepitant/LE300). In each preparation, the data were normalized at the peak amplitude or 

duration before drug administration. Each bar graph and vertical bar indicate mean and SEM. 

†P < 0.05, vehicle vs. imidapril, imidapril vs. LE300/imidapril. 
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Fig. 6. Swallowing motor activity elicited by electrical stimulation of the SLN. A: An 

example of the swallowing burst evoked by SLN stimulation with single electric pulse (100 

µA, 100 µs). An open arrowhead and a black arrow indicate an electrical stimulation artifact 

and the swallowing burst, respectively. B: An example of the swallowing bursts evoked by 

SLN stimulation with repetitive electric pulses (100 µA, 100 µs, 5 Hz). A white bar and black 

arrows indicate the period of electrical stimulation and evoked swallowing bursts, 

respectively. 

 

Fig. 7. Effects of imidapril and cilostazol on swallowing motor activity elicited by electrical 

stimulation of the SLN. A: The normalized peak amplitude (left) and duration (right) of the 

swallowing bursts evoked by SLN stimulation with single electric pulse (100 µA, 100 µs) in 

three groups (vehicle, imidapril, cilostazol). In each preparation, the data were normalized at 

the peak amplitude or duration before drug administration. Each bar graph and vertical bar 

indicate mean and SEM. B: The normalized peak amplitude (left) and duration (right) of the 

swallowing bursts evoked by SLN stimulation with repetitive electric pulses (100 µA, 100 µs, 

5 Hz) in three groups (vehicle, imidapril, cilostazol). In each preparation, the data were 

normalized at the peak amplitude or duration before drug administration. Each bar graph and 

vertical bar indicate mean and SEM. C: The number of swallowing bursts evoked by the 

repetitive stimulation of the SLN on each stimulation intensity before and during 

administration of imidapril (left) and cilostazol (right). The stimulus intensity and frequency 

were 0.01mA~0.5mA and 5 Hz, respectively. Asterisk show significant difference between 

before and after administration of imidapril (P ˂ 0.05). Each symbol and vertical bar indicate 

mean and SEM. 
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