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Development of a High-intensity Focused Ultrasound Exposure  
Device for Reducing Skin Burn Risk
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Abstract : High-intensity focused ultrasound（HIFU）can non-invasively irradiate 
inside the body.  However, when used to treat fetuses, it can cause thermal burns 
of the mother’s abdominal wall at the skin interface.  This study was carried out to 
determine whether a modified HIFU transducer enabling split-aperture irradiation 
can prevent thermal burns.  Two HIFU transducers were compared: a conventional 
transducer using full-aperture irradiation and a modified transducer using split-
aperture irradiation.  The modi�ed transducer was divided into six sectors for split-
aperture irradiation and had a larger surface area and a smaller F number（focal 
length / aperture diameter）than the conventional transducer.  HIFU was delivered 
to eight sites on the left and right leg of a three-month-old baby pig under general 
anesthesia, and the sites were assessed for thermal burning by two or more derma-
tologists.  The same person performed all irradiations.  Full-aperture irradiation with 
the conventional transducer caused deep dermal burns at all target sites, while split-
aperture irradiation with the modified transducer caused only epidermal burns or 
super�cial dermal burns.  Split-aperture irradiation using a modi�ed HIFU transducer 
with six sectors and a smaller F number reduces the severity of skin burns, and thus 
will improve the safety of HIFU therapy.
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Introduction

　Although improvements in prenatal diagnosis have increased the likelihood of identifying 
abnormalities in fetuses, there are a limited number of effective strategies for treating the 
abnormalities, particularly in a non-invasive manner.  To improve this situation, various new 
medical devices have been and are being developed, along with advanced control methods.  
Before using these devices in the clinical setting, the possibility of damage to the patient should 
be considered and assessed.  Because many fetal treatments involve the insertion of a device 
into the uterus from outside the body, treatment-related complications and infections can occur.  
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　High-intensity focused ultrasound（HIFU）treatment uses a powerful ultrasonic wave from a 
transmission source（transducer）.  Ultrasonic energy is concentrated in the vicinity of a focal point 
in the target tissue, converted to heat, and thermally coagulates the tissue1，2）.  HIFU has been 
used for several categories of treatment, including the treatment of solid cancers, such as liver 
and prostate cancers3-6）.  We used HIFU to treat twin reversed arterial perfusion sequence for 
the first time in 20137，8）.  The treatment had little influence on the intervening tissues outside 
the area of focus although the HIFU exposure duration had to be limited in order to avoid a 
possible skin burn of the mother.  In fact, skin burn injuries have been observed in 0.29％ of 
27,053 patients who received HIFU treatment for benign uterine diseases9）.  
　HIFU can non-invasively irradiate the inside of the body, rendering it suitable for fetal 
treatment.  The therapeutic actions of ultrasound are attributable to its thermal and non-
thermal effects.  The thermal effect of ultrasound occurs when ultrasonic energy is absorbed 
and converted into thermal energy.  Depending on the absorption coefficient of the tissue, it is 
possible to thermally induce tissue coagulation necrosis by raising the focal temperature to 60℃ 
or higher using HIFU irradiation for several seconds2）.
　The non-thermal effect of ultrasound typically occurs due to the existence of microbubbles, 
whether they have been generated in situ via acoustic cavitation or transported from somewhere 
else; indeed, they can even enhance the thermal effect of ultrasound10）.  Ultrasonically-activated 
microbubbles cause tissue and cellular damage, including the destruction of cell membranes 
and breakdown of capillary blood vessels.  In addition to thermal coagulation necrosis and 
degeneration, HIFU can cause tissue destruction via the above-mentioned mechanism, which can 
be an advantage of HIFU treatment as long as it is properly localized.
　Acoustic cavitation can also be induced more easily in a standing wave than in a progressive 
wave field because microbubbles smaller than the resonant size migrate toward the antinode 
of the standing wave field where they grow to the resonant size through coalescence and 
rectified diffusion11）.  During HIFU exposure, HIFU waves can be reflected by the interfaces 
of the coupling water bag, as well as by the biological tissue boundaries intervening between 
the transducer and the focus, resulting in standing wave components in the HIFU field.  We 
hypothesized that such standing wave components are one of the primary causes of skin burns 
due to HIFU exposure.  The hypothetical scenario is that cavitation occurs in the vicinity of the 
intervening skin due to standing wave components of the HIFU field and then the cavitated 
microbubbles locally enhance the heating effect of HIFU, which will cause a skin burn12）.
　Based on this hypothesis, two types of HIFU transducers were prototyped: a conventional 
HIFU transducer and a modified HIFU transducer enabling a split-aperture exposure.  It takes 
time in the order of milliseconds for a microbubble to grow to the resonant size due to the effect 
of standing waves, whose duration can be controlled by the exposure duration.  Therefore, the 
modified transducer was designed to enable intermittent exposure of the intervening tissues while 
maintaining continuous exposure at the HIFU focus.  This paper reports an animal experiment 
comparing the biological effect of conventional continuous exposure using a conventional HIFU 
transducer with that of intermittent split-aperture exposure using a modified transducer.
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Materials and Methods

HIFU transducer and system

　Two HIFU transducers using piezoelectric transducers（C-213; Fuji Ceramic, Fujinomiya, Japan）
were prototyped.  Both air-backed transducers in aluminum housing had a central hole 34 mm 
in diameter reserved for an imaging probe.  The conventional HIFU transducer（78 mm in 
diameter）had a spherical curvature radius of 75 mm（Fig. 1a）.  The modified HIFU transducer
（100 mm in diameter）had a spherical curvature radius of 85 mm（Fig. 1b）.  Its aperture was 
divided into six sectors to allow split-aperture exposure as shown in Figure 2.  In this exposure 
sequence, most of the tissues intervening between the transducer and the focus are exposed 

Fig. 1.  （a）Unmodified and（b）modified second-generation high-intensity focused ultrasound
（HIFU）transducers. In the unmodified unit, the imaging probe was located in the 
coaxial radiation area, and the diameter of the transducer was 78 mm. In the modified 
unit, the diameter of the transducer was 100 mm, and the F number was improved 
from 1.00 to 0.85. The modified HIFU transducer was divided into six sectors to split 
the ultrasonic exposure pulse. （c）Enlarging the surface area of the skin interface 
reduced the thermal burn in the skin without changing the focal distance. F, focal 
length; D, aperture diameter; F number, focal length / aperture diameter.
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intermittently while the tissue at the focus is exposed continuously.
　The transducer with an imaging probe was sealed with a latex-free ultrasound probe 
cover（sterile, 17.8×147 cm, telescopically folded cover ; Civ-Flex ; Civco, Kalona, IA, USA）
with circulating water inside, degassed and cooled below 20℃ by a Sonachill cooling system
（Sonablate 500 ; SonaCare Medical, LLC, Charlotte, NC, USA）.  The conventional HIFU 
transducer was driven by a radiofrequency amplifier（RF Power Amplifier Model 1040L; E&I, 
Rochester, NY, USA）amplifying a sine wave from a function generator（WF1974; NF Corp., 
Yokohama, Japan）.  Both halves of the six sectors of the modified HIFU transducer were each 
driven by such an amplifier.  

Laboratory animal experiment

　The experiments were conducted using a 3-month-old baby pig（Landrace×Large White×Duroc 
three-way cross ; weight, 35 kg）.  General anesthesia was administered with the animal in a 
supine position.  The epidermis of the pig’s thigh was regarded as a model of the epidermis of 
the mother’s body, and the pig bristles were shaved.  Blood pressure, pulse rate, respiration rate, 
and blood oxygen concentration were continuously measured before and after irradiation.  The 
pig was killed by intravenous potassium chloride drip and necropsied after death; the muscle 
and skin were carefully examined for gross pathological lesions.

Fig. 2.  Full and split irradiation. The total acoustic power of the high-intensity focused 
ultrasound（HIFU）was 200 W, the frequency was 1.1 MHz, and the irradiation time 
was 10 sec. These settings were the same for both irradiation protocols. （a）Full 
irradiation. （b）Split irradiation. The modified HIFU transducer was divided into six 
sectors to split the ultrasonic irradiation pulse. The path of the ultrasonic exposure 
was changed every 50 µsec to prevent the formation of a progressive wave.
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　The study was approved by the Institutional Animal Care and Use Committee（Approval Number: 
IVT17-11）, which operates in accordance with the Japanese Government for the care and use of 
laboratory animals.  The experimental protocols were conducted in compliance with the Animal 
Management Act, under the approval of the Institutional Animal Care and Use Committee.

HIFU irradiation method

　Each HIFU transducer was driven at an instantaneous acoustic power of 200 W and a 
frequency of 1.1 MHz for 10 sec.  These parameters were chosen based on previous basic and 
clinical research studies13）, with ultrasonic energy at a level sufficient to denature tissue7，9，14，15）.  
Each half of the six sectors of the modified transducer（3 sectors each）was driven alternately, 
one after the other, with a switching period of 50 µsec.  This irradiation sequence is referred 
to as split-aperture irradiation, while the other is full-aperture irradiation.  In both irradiation 
sequences, a high-intensity short pulse at an instantaneous acoustic power of 760 W for 0.1 msec 
was irradiated every 100 msec to generate cavitation around the focal point.  Even in the split-
aperture sequence, the full aperture was used for this short pulse irradiation.  The same operator 
performed all irradiations, which were separately delivered to the left and right legs（Fig. 3）.

Evaluation method

　Gross thigh skin evaluation.  We irradiated eight randomly chosen sites on the femoral skin: 
four on the right and four on the left side of the animal.  The irradiated femoral skin was 
excised, along with the muscle, and subsequently examined by two or more dermatologists.
　Histological evaluation of the thigh.  A total of eight sites in the skin and muscle were 
histologically evaluated.  The tissue specimens were stained with hematoxylin and eosin.
　Evaluation of complications.  Blood pressure, pulse rate, respiratory rate, and blood oxygen 
concentration were analyzed for irradiation-related changes.

Fig. 3.  High-intensity focused ultrasound（HIFU）irradiation. General anesthesia was 
administered with the pig in a supine position. Full irradiation and split irradiation 
were delivered to four sites on the left and four sites on the right internal region 
of the posterior limbs（within the yellow squares）. All exposures were performed 
by the same person.
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Results

Gross thigh skin evaluation

　In the full-aperture protocol, white lesions near the hardened areas of all irradiation sites were 
observed, as was redness in the surrounding tissue.  The white lesions were determined to be 
deep tissue burn injuries（Fig. 4）.  In the split-aperture protocol, scattered white lesions were 
observed in some areas, and all sites had epidermal burns or superficial dermal burns（Table 1）.

Histological evaluation of the thigh skin

　After full-aperture irradiation, heat denaturation was observed in almost all layers of the 
dermis, and the capillaries in the dermis exhibited vacuolar degeneration（Fig. 5）.  After split-
aperture irradiation, heat denaturation was observed in the upper half of the dermis only, and 
there was no vacuolar degeneration of the blood vessels.  

Evaluation of complications

　Blood pressure, pulse rate, respiratory rate, and arterial oxygen saturation in the pig before 
and after HIFU exposure were similar for full- and split-aperture irradiation.

Discussion

　The diagnosis of the burns by two or more dermatologists, along with the histopathological 
review of the tissue specimens, confirmed that full-aperture exposure using the conventional 
HIFU transducer caused deep dermal burns in all irradiated areas.  In contrast, split-aperture 
exposure using the modified transducer did not cause deep dermal burns, despite basically the 
same ultrasonic power at the same frequency delivered to the same focal region, producing 
similar focal lesions.  This result is consistent with the proposed hypothesis that microbubbles 
are generated in the vicinity of the intervening skin by the standing wave components of the 

Fig. 4.  Injuries at the irradiated sites. Red circles are 
sites that received full irradiation. Blue circles 
are sites that received split irradiation. 

Table 1.   Dermal findings according to irradiation 
protocol

Exposure 
site

Irradiation 
protocol ED SDB DDB

1 Full ○
2 Full ○
3 Full ○
4 Full ○
5 Split ○
6 Split ○
7 Split ○
8 Split ○

ED, epidermal burn ; SDB, superficial dermal burn ; 
DDB, deep dermal burn.
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conventional HIFU field which locally enhances the heating effect, causing skin burns; therefore, 
the skin burn should be decreased by suppressing the standing wave formation.
　In the split-aperture exposure, a period of 50 µsec was chosen for alternating irradiation using 
three of the six sectors of the modified transducer in turn.  Assuming an ultrasonic reflector, 
such as the skin, is located halfway between the transducer and the focus, standing waves due 
to the overlap of more than two components will occur if the ultrasonic pulse train is longer 
than the round-trip distance between the reflector and the transducer.  The switching period of 
50 µsec, corresponding to a pulse train length of 75 mm, was chosen so that it would be shorter 
than the round-trip distance expected to be around the focal length, which was 85 mm for the 
modified transducer.
　The F number of the modified transducer was 0.85, while it was 0.96 for the conventional 
transducer.  The smallness of the F number of the modified transducer may have also contributed 
to suppressing standing waves.  Assuming a semi-planar reflecting boundary such as skin, a 
standing wave field can be formed easily by plane waves.  Moreover, a standing wave field can be 
formed less easily by a focused field with a smaller F number than with a larger F number.
　When HIFU irradiation is applied to blood vessels, the cells of the vessel wall become 
vacuolated12）.  After the full-aperture irradiation, we observed vacuolar degeneration in the blood 

Fig. 5.  Histopathologic evaluation. （a）Heat denaturation in all layers of the dermis 
after full irradiation. Hematoxylin and eosin（H&E）, ×4. （b）Heat denaturation 
in the upper half of the dermis after split irradiation. H&E, ×4. （c）Vacuolar 
degeneration（yellow arrow）in the blood vessel capillaries of the dermis after 
full irradiation. H&E, ×40. （d）There was no vacuolar degeneration in the blood 
vessel capillaries of the dermis after split irradiation. H&E, ×40.
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vessel capillaries of the true skin, which may have been caused by cavitation in vessel walls.  
In contrast, with the split-aperture irradiation, there was no vacuolar degeneration in the true 
skin blood vessel capillaries.  Based on these findings, the extent of the burn injury was clearly 
reduced by the split-aperture irradiation.  Under the same power and conditions, we irradiated 
the kidney of the pig percutaneously.  After both full-aperture and split-aperture irradiation, 
similar reddish lesions corresponding to each HIFU focus were observed in the kidney, as shown 
in Figure 6.  This proposed irradiation protocol using the modified HIFU transducer may have 
immense potential as a next-generation HIFU treatment.
　The present study has some limitations.  The radiation targets were pig skin, fat, and muscle, 
which differ from the human counterpart.  In addition, human HIFU therapy is performed while 
the patient is conscious.  Because our experiment was conducted under general anesthesia, the 
influence of muscle relaxants, body movements, and circulation must be considered.  Another 
limitation is the lack of assessment of the efficacy of the transducer in detail ; although burn 
injuries were reduced, the definitive goal is the complete prevention of burns.  Thus, further 
improvements in the transducer and irradiation protocol may be needed.  
　In conclusion, the proposed split-aperture irradiation protocol reduced the severity of skin 
thermal burns in this animal experiment.  Using the modified HIFU transducer and adjusting 
the HIFU irradiation protocol, the risk of skin burns should also be reduced in human patients.  
Thus, this combination is proposed as a next-generation HIFU treatment in the clinical setting.
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